643 research outputs found
Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics
A continuous time model for multiagent systems governed by reinforcement
learning with scale-free memory is developed. The agents are assumed to act
independently of one another in optimizing their choice of possible actions via
trial-and-error search. To gain awareness about the action value the agents
accumulate in their memory the rewards obtained from taking a specific action
at each moment of time. The contribution of the rewards in the past to the
agent current perception of action value is described by an integral operator
with a power-law kernel. Finally a fractional differential equation governing
the system dynamics is obtained. The agents are considered to interact with one
another implicitly via the reward of one agent depending on the choice of the
other agents. The pairwise interaction model is adopted to describe this
effect. As a specific example of systems with non-transitive interactions, a
two agent and three agent systems of the rock-paper-scissors type are analyzed
in detail, including the stability analysis and numerical simulation.
Scale-free memory is demonstrated to cause complex dynamics of the systems at
hand. In particular, it is shown that there can be simultaneously two modes of
the system instability undergoing subcritical and supercritical bifurcation,
with the latter one exhibiting anomalous oscillations with the amplitude and
period growing with time. Besides, the instability onset via this supercritical
mode may be regarded as "altruism self-organization". For the three agent
system the instability dynamics is found to be rather irregular and can be
composed of alternate fragments of oscillations different in their properties.Comment: 17 pages, 7 figur
Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks
After the scientific development of Biotic Ligand Models (BLMs) in recent decades these models are now considered suitable for implementation in regulatory risk assessment of metals in freshwater bodies. The approach has been developed over several years and has been described in many peer-reviewed publications. The original complex BLMs have been applied in prospective risk assessment reports for metals and metal compounds and are also recommended as suitable concepts for the evaluation of monitoring data in the context of the European Water Framework Directive. Currently, several user-friendly BLM-based bioavailability software tools are available for assessing the aquatic toxicity of a limited number of metals (mainly copper, nickel, and zinc). These tools need only a basic set of water parameters as input (e.g., pH, hardness, dissolved organic matter and dissolved metal concentration). Such tools seem appropriate to foster the implementation in routine water quality assessments. This work aims to review the existing bioavailability-based regulatory approaches and the application of available BLM-based bioavailability tools for this purpose. Advantages and possible drawbacks of these tools (e.g., feasibility, boundaries of validity) are discussed, and recommendations for further implementation are given
A web-accessible computer program for calculating electrical potentials and ion activities at cell-membrane surfaces
Increasing evidence indicates that plant responses to ions (uptake/transport, inhibition, and alleviation of inhibition) are dependent upon ion activities at the outer surface of root-cell plasma membranes (PMs) rather than activities in the bulk-phase rooting medium
Recommended from our members
Open-system orchestration as a relational source of sensing capabilities: Evidence from a venture association
Research on innovation networks has highlighted the pivotal role that actors with more prominence and power, such as hub firms, may play in orchestrating the activities of other network members along a collective innovation effort. Our study examined the undertheorized, but no less important, type of orchestration that characterizes other organizations, such as business incubators and venture associations, who seek to support the dispersed entrepreneurial efforts of network members. We refer to this type as ‘open-system’ orchestration, as opposed to the commonly studied ‘closed-system’ type performed by hub firms. Our findings reveal how the processes of open-system orchestration differ markedly from those of closed-system orchestration, and detail how these processes influence the micro-foundations of network members’ sensing capabilities. By doing so, we also offer empirical substantiation and theoretical elaboration to the idea that dynamic capabilities might not reside exclusively inside firms, but could be co-created relationally with other parties in the business ecosystem
Supporting Parental Decisions About Genomic Sequencing for Newborn Screening: The NC NEXUS Decision Aid
Advances in genomic sequencing technology have raised fundamental challenges to the traditional ways genomic information is communicated. These challenges will become increasingly complex and will affect a much larger population in the future if genomics is incorporated into standard newborn screening practice. Clinicians, public health officials, and other stakeholders will need to agree on the types of information that they should seek and communicate to parents. Currently, few evidence-based and validated tools are available to support parental informed decision-making. These tools will be necessary as genomics is integrated into clinical practice and public health systems. In this article we describe how the North Carolina Newborn Exome Sequencing for Universal Screening study is addressing the need to support parents in making informed decisions about the use of genomic testing in newborn screening. We outline the context for newborn screening and justify the need for parental decision support. We also describe the process of decision aid development and the data sources, processes, and best practices being used in development. By the end of the study, we will have an evidenced-based process and validated tools to support parental informed decision-making about the use of genomic sequencing in newborn screening. Data from the study will help answer important questions about which genomic information ought to be sought and communicated when testing newborns
Synthesis, characterization, and biological evaluation of N-methyl derivatives of norbelladine
Abstract
Norbelladine derivatives have garnered attention in recent years due to their diverse biological activities and pivotal role in the biosynthetic pathway of Amaryllidaceae alkaloids. This study reports the synthesis and biological evaluation of four O,N-methylated derivatives of norbelladine. These derivatives were synthesized through a three-step process: forming imine intermediates from benzaldehydes with tyramine, hydrogenating them to secondary amines, and N-methylating these amines. The products were purified and characterized by 1H and 13C NMR spectroscopy. Their biological activities were assessed by evaluating their ability to inhibit Alzheimer’s disease-related enzymes acetylcholinesterase and butyrylcholinesterase. Additionally, the cytotoxic activity of the novel derivatives was tested against cancer cell lines derived from hepatocarcinoma (Huh7), adenocarcinoma (HCT-8), and acute myeloid leukemia (THP-1) cells, and their antiviral properties against a human coronavirus (HCoV-OC43), a flavivirus (dengue virus), and a lentivirus (pseudotyped HIV-1). Docking analysis was performed to understand the impact of the N-methylation on their pharmacological relevance. The results indicate that while N-methylation does not significantly affect antiviral activity, it enhances butyrylcholinesterase inhibition for N-methylnorbelladine and 4′-O,N-dimethylnorbelladine. Overall, this work enhances our understanding of norbelladine derivatives, provides new tools for Alzheimer’s disease research, and lays the groundwork for future pharmaceutical developments
A Literature Survey of Information Systems Facilitating the Identification of Industrial Symbiosis
A Cytoplasmic Complex Mediates Specific mRNA Recognition and Localization in Yeast
The localization of ash mRNA in yeast requires the binding of She2p and the myosin adaptor protein She3p to its localization element, which is highly specific and leads to the assembly of stable transport complexes
Intestinal Resident Yeast Candida glabrata Requires Cyb2p-Mediated Lactate Assimilation to Adapt in Mouse Intestine
The intestinal resident Candida glabrata opportunistically infects humans. However few genetic factors for adaptation in the intestine are identified in this fungus. Here we describe the C. glabrata CYB2 gene encoding lactate dehydrogenase as an adaptation factor for survival in the intestine. CYB2 was identified as a virulence factor by a silkworm infection study. To determine the function of CYB2, we analysed in vitro phenotypes of the mutant Δcyb2. The Δcyb2 mutant grew well in glucose medium under aerobic and anaerobic conditions, was not supersensitive to nitric oxide which has fungicidal-effect in phagocytes, and had normal levels of general virulence factors protease, lipase and adherence activities. A previous report suggested that Cyb2p is responsible for lactate assimilation. Additionally, it was speculated that lactate assimilation was required for Candida virulence because Candida must synthesize glucose via gluconeogenesis under glucose-limited conditions such as in the host. Indeed, the Δcyb2 mutant could not grow on lactate medium in which lactate is the sole carbon source in the absence of glucose, indicating that Cyb2p plays a role in lactate assimilation. We hypothesized that Cyb2p-mediated lactate assimilation is necessary for proliferation in the intestinal tract, as the intestine is rich in lactate produced by bacteria flora, but not glucose. The Δcyb2 mutant showed 100-fold decreased adaptation and few cells of Saccharomyces cerevisiae can adapt in mouse ceca. Interestingly, C. glabrata could assimilate lactate under hypoxic conditions, dependent on CYB2, but not yeast S. cerevisiae. Because accessible oxygen is limited in the intestine, the ability for lactate assimilation in hypoxic conditions may provide an advantage for a pathogenic yeast. From those results, we conclude that Cyb2p-mediated lactate assimilation is an intestinal adaptation factor of C. glabrata
- …
