580 research outputs found

    Host and Habitat Use by Parasitoids (Hymenoptera: Pteromalidae) of House Fly and Stable Fly (Diptera: Muscidae) Pupae

    Get PDF
    House fly and stable fly pupae were collected during the summer from a dairy farm in northern Illinois. Spalangia nigroaenea accounted for most of the parasitoids recovered from house flies. Spalangia nigra, S. endius, Muscidifurax spp., and S. nigroaenea accounted for most of the parasitoids from stable flies. The majority of flies were house flies late in the summer and stable flies early in the summer. Higher percentages of house flies tended to be in samples containing lower substrate moisture and higher substrate temperature. Parasitism of stable flies started earlier and peaked weeks before that of house flies, with overall parasitism highest from mid-to late-summer. Parasitism of house flies, but not stable flies, differed significantly among habitats, being greater in calf hutches than in edge samples. Hymenopterous parasitoids from house flies tended to include a greater percentage of S. nigroaenea (and a lower percentage of Muscidifurax spp.) in calf hutches versus drainage or edge habitats and in sub- strates consisting of mostly wood shavings versus mostly manure. Within samples, differential parasitism of fly species was not detected for S. nigroaenea, S. endius, or Muscidifurax spp.; but S. nigra preferentially parasitized stable flies

    Host and Habitat Use by Parasitoids (Hymenoptera: Pteromalidae) of House Fly and Stable Fly (Diptera: Muscidae) Pupae

    Get PDF
    House fly and stable fly pupae were collected during the summer from a dairy farm in northern Illinois. Spalangia nigroaenea accounted for most of the parasitoids recovered from house flies. Spalangia nigra, S. endius, Muscidifurax spp., and S. nigroaenea accounted for most of the parasitoids from stable flies. The majority of flies were house flies late in the summer and stable flies early in the summer. Higher percentages of house flies tended to be in samples containing lower substrate moisture and higher substrate temperature. Parasitism of stable flies started earlier and peaked weeks before that of house flies, with overall parasitism highest from mid-to late-summer. Parasitism of house flies, but not stable flies, differed significantly among habitats, being greater in calf hutches than in edge samples. Hymenopterous parasitoids from house flies tended to include a greater percentage of S. nigroaenea (and a lower percentage of Muscidifurax spp.) in calf hutches versus drainage or edge habitats and in sub- strates consisting of mostly wood shavings versus mostly manure. Within samples, differential parasitism of fly species was not detected for S. nigroaenea, S. endius, or Muscidifurax spp.; but S. nigra preferentially parasitized stable flies

    Helicity sensitive terahertz radiation detection by dual-grating-gate high electron mobility transistors

    Get PDF
    We report on the observation of a radiation helicity sensitive photocurrent excited by terahertz (THz) radiation in dual-grating-gate (DGG) InAlAs/InGaAs/InAlAs/InP high electron mobility transistors (HEMT). For a circular polarization the current measured between source and drain contacts changes its sign with the inversion of the radiation helicity. For elliptically polarized radiation the total current is described by superposition of the Stokes parameters with different weights. Moreover, by variation of gate voltages applied to individual gratings the photocurrent can be defined either by the Stokes parameter defining the radiation helicity or those for linear polarization. We show that artificial non-centrosymmetric microperiodic structures with a two-dimensional electron system excited by THz radiation exhibit a dc photocurrent caused by the combined action of a spatially periodic in-plane potential and spatially modulated light. The results provide a proof of principle for the application of DGG HEMT for all-electric detection of the radiation's polarization state.Comment: 7 pages, 4 figure

    Classical ratchet effects in heterostructures with a lateral periodic potential

    Get PDF
    We study terahertz radiation induced ratchet currents in low dimensional semiconductor structures with a superimposed one-dimensional lateral periodic potential. The periodic potential is produced by etching a grating into the sample surface or depositing metal stripes periodically on the sample top. Microscopically, the photocurrent generation is based on the combined action of the lateral periodic potential, verified by transport measurements, and the in-plane modulated pumping caused by the lateral superlattice. We show that a substantial part of the total current is caused by the polarization-independent Seebeck ratchet effect. In addition, polarization-dependent photocurrents occur, which we interpret in terms of their underlying microscopical mechanisms. As a result, the class of ratchet systems needs to be extended by linear and circular ratchets, sensitive to linear and circular polarizations of the driving electro-magnetic force.Comment: 11 pages, 9 figures, 2 column

    Spin polarized electric currents in semiconductor heterostructures induced by microwave radiation

    Full text link
    We report on microwave (mw) radiation induced electric currents in (Cd,Mn)Te/(Cd,Mg)Te and InAs/(In,Ga)As quantum wells subjected to an external in-plane magnetic field. The current generation is attributed to the spin-dependent energy relaxation of electrons heated by mw radiation. The relaxation produces equal and oppositely directed electron flows in the spin-up and spin-down subbands yielding a pure spin current. The Zeeman splitting of the subbands in the magnetic field leads to the conversion of the spin flow into a spin-polarized electric current.Comment: 3 pages, 4 figure

    Cyclotron Resonance Assisted Photocurrents in Surface States of a 3D Topological Insulator Based on a Strained High Mobility HgTe Film

    Get PDF
    We report on the observation of cyclotron resonance induced photocurrents, excited by continuous wave terahertz radiation, in a 3D topological insulator (TI) based on an 80 nm strained HgTe film. The analysis of the photocurrent formation is supported by complimentary measurements of magneto-transport and radiation transmission. We demonstrate that the photocurrent is generated in the topologically protected surface states. Studying the resonance response in a gated sample we examined the behavior of the photocurrent, which enables us to extract the mobility and the cyclotron mass as a function of the Fermi energy. For high gate voltages we also detected cyclotron resonance (CR) of bulk carriers, with a mass about two times larger than that obtained for the surface states. The origin of the CR assisted photocurrent is discussed in terms of asymmetric scattering of TI surface carriers in the momentum space. Furthermore, we show that studying the photocurrent in gated samples provides a sensitive method to probe the effective masses and the mobility of 2D Dirac surface states, when the Fermi level lies in the bulk energy gap or even in the conduction band

    Nanometer-scale electrical characterization of stressed ultrathin SiO2 films using conducting atomic force microscopy

    Get PDF
    A conductive atomic force microscope has been used to electrically stress and to investigate the effects of degradation in the conduction properties of ultrathin (<6 nm) SiO2 films on a nanometer scale (areas of ≈100 nm2). Before oxide breakdown, switching between two states of well-defined conductivity and sudden changes of conductivity were observed, which are attributed to the capture/release of single charges in the defects generated during stress

    Tuning emission energy and fine structure splitting in quantum dots emitting in the telecom O-band

    Get PDF
    We report on optical investigations of MOVPE-grown InGaAs/GaAs quantum dots emitting at the telecom O-band that were integrated onto uniaxial piezoelectric actuators. This promising technique, which does not degrade the emission brightness of the quantum emitters, enables us to tune the quantum dot emission wavelengths and their fine-structure splitting. By spectrally analyzing the emitted light with respect to its polarization, we are able to demonstrate the cancelation of the fine structure splitting within the experimental resolution limit. This work represents an important step towards the high-yield generation of entangled photon pairs at telecommunication wavelength, together with the capability to precisely tune the emission to target wavelengths

    Terahertz radiation driven chiral edge currents in graphene

    Get PDF
    We observe photocurrents induced in single layer graphene samples by illumination of the graphene edges with circularly polarized terahertz radiation at normal incidence. The photocurrent flows along the sample edges and forms a vortex. Its winding direction reverses by switching the light helicity from left- to right-handed. We demonstrate that the photocurrent stems from the sample edges, which reduce the spatial symmetry and result in an asymmetric scattering of carriers driven by the radiation electric field. The developed theory is in a good agreement with the experiment. We show that the edge photocurrents can be applied for determination of the conductivity type and the momentum scattering time of the charge carriers in the graphene edge vicinity.Comment: 4 pages, 4 figure, additional Supplemental Material (3 pages, 1 figure
    corecore