36 research outputs found

    Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering

    Get PDF
    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review

    Microalgae as second generation biofuel. A review

    Full text link

    TELEMAC : an integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet

    No full text
    The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem

    Comparative Life Cycle Assessment Study on Environmental Impact of Oil Production from Micro-Algae and Terrestrial Oilseed Crops

    No full text
    Global policies for reducing fossil fuel dependency and CO2 emissions have fostered the development of low carbon sustainable energy. Since first generation biofuels may generate environmental burdens related to agricultural production, second and third generation biofuels from lignocellulosic feedstock and algae-to-energy systems have been developed. In this study, the Life Cycle Assessment methodology is applied to compare quantitatively, utilizing primary data, the impacts of the first generation in respect to the third-generation biofuels. Results show that micro-algae are neither competitive yet with traditional oil crops nor with fossil fuel. The use of renewable technologies as photovoltaics and biogas self-production might increase the competitiveness of micro-algae oil. Further investigations are however necessary to optimize their production chain and to increase the added value of co-products

    An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet

    No full text
    The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem. © IWA Publishing 2005

    An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet

    No full text
    The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem
    corecore