780 research outputs found

    Emulsion formation and stabilization by biomolecules: the leading role of cellulose

    Get PDF
    Emulsion stabilization by native cellulose has been mainly hampered because of its insolubility in water. Chemical modification is normally needed to obtain water-soluble cellulose derivatives. These modified celluloses have been widely used for a range of applications by the food, cosmetic, pharmaceutic, paint and construction industries. In most cases, the modified celluloses are used as rheology modifiers (thickeners) or as emulsifying agents. In the last decade, the structural features of cellulose have been revisited, with particular focus on its structural anisotropy (amphiphilicity) and the molecular interactions leading to its resistance to dissolution. The amphiphilic behavior of native cellulose is evidenced by its capacity to adsorb at the interface between oil and aqueous solvent solutions, thus being capable of stabilizing emulsions. In this overview, the fundamentals of emulsion formation and stabilization by biomolecules are briefly revisited before different aspects around the emerging role of cellulose as emulsion stabilizer are addressed in detail. Particular focus is given to systems stabilized by native cellulose, either molecularly-dissolved or not (Pickering-like effect).Financially support by the Portuguese Foundation for Science and Technology, FCT, via the projects PTDC/AGR-TEC/4814/2014, PTDC/ASP-SIL/30619/2017 and researcher grant IF/01005/2014. RISE Research Institutes of Sweden AB and PERFORM, a competence platform in Formulation Science at RISE, are acknowledged for additional financing. This research has been supported by Treesearch.se.info:eu-repo/semantics/publishedVersio

    The comparative evaluation of ERTS-1 imagery for resource inventory in land use planning

    Get PDF
    The author has identified the following significant results. Multidiscipline team interpretation and mapping of resources for Crook County is complete on 1:250,000 scale enlargements of ERTS imagery and 1:120,000 hi-flight photography. Maps of geology, soils, vegetation-land use and land resources units were interpreted to show limitations, suitabilities, and geologic hazards for land use planning. Mapping of lineaments and structures from ERTS imagery has shown a number of features not previously mapped in Oregon. A multistage timber inventory of Ochoco National Forest was made, using ERTS images as the first stage. Inventory of forest clear-cutting practices was successfully demonstrated with color composites. Soil tonal differences in fallow fields correspond with major soil boundaries in loess-mantled terrain. A digital classification system used for discriminating natural vegetation and geologic material classes was successful in separating most major classes around Newberry Caldera, Mt. Washington, and Big Summit Prairie

    Creation of non-human primate neurogenetic disease models by gene targeting and nuclear transfer

    Get PDF
    Genetically modified rhesus macaques are necessary because mouse models are not suitable for a number of important neurogenetic disorders; for example, Kallmann's syndrome, Lesch-Nyhan's disease and Ataxia-Telangiectasia. Mouse models may not be suitable because there may be no mouse ortholog of the human gene of interest, as is the case for Kallmann's syndrome, or because mutant mice do not exhibit the same phenotype observed in humans, as is the the case for Lesch-Nyhan's disease and Ataxia-Telangiectasia. Non-human primate models of neurogenetic diseases are expected to more closely resemble human diseases than existing mouse models. Genetically modified rhesus macaques can be created by modifying the genome of a somatic cell and then transferring the nucleus from this cell to an enucleated oocyte. Random integration of a transgene is sufficient to create models of gain-of-function genetic diseases. Stable expression of green fluorescent protein has been achieved in rhesus macaque fibroblasts. However, gene targeting is necessary to create models of loss-of-function genetic diseases. Several technical challenges must be overcome before null mutant non-human primates can be produced. In our experience, fetal fibroblasts frequently become senescent before selection procedures can be completed. We have overcome this problem by transfecting somatic cells with human telomerase reverse transcriptase. This enzyme extends the telomeres, and lifespan, of somatic cells. Long and accurate polymerase chain reaction can be used to obtain sufficient regions of homology of isogenic rhesus genomic DNA for targeting constructs. This should improve gene targeting efficiency. Gene targeting experiments are currently underway. Null mutant rhesus macaques will likely result in breakthrough advances in the understanding of neurogenetic disease and prove invaluable for preclinical trials of new therapies

    Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath

    Get PDF
    Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The MMS mission provides the first serious opportunity to check if small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures where ions are demagnetized. Within the selected structure we see signatures of ion demagnetization, electron jets, electron heating and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales

    The capacitance of the circular parallel plate capacitor obtained by solving the Love integral equation using an analytic expansion of the kernel

    Full text link
    The capacitance of the circular parallel plate capacitor is calculated by expanding the solution to the Love integral equation into a Fourier cosine series. Previously, this kind of expansion has been carried out numerically, resulting in accuracy problems at small plate separations. We show that this bottleneck can be alleviated, by calculating all expansion integrals analytically in terms of the Sine and Cosine integrals. Hence, we can, in the approximation of the kernel, use considerably larger matrices, resulting in improved numerical accuracy for the capacitance. In order to improve the accuracy at the smallest separations, we develop a heuristic extrapolation scheme that takes into account the convergence properties of the algorithm. Our results are compared with other numerical results from the literature and with the Kirchhoff result. Error estimates are presented, from which we conclude that our results is a substantial improvement compared with earlier numerical results.Comment: 15 pages, 3 figure

    Limitations of the Rhesus Macaque Draft Genome Assembly and Annotation

    Get PDF
    Finished genome sequences and assemblies are available for only a few vertebrates. Thus, investigators studying many species must rely on draft genomes. Using the rhesus macaque as an example, we document the effects of sequencing errors, gaps in sequence and misassemblies on one automated gene model pipeline, Gnomon. The combination of draft genome with automated gene finding software can result in spurious sequences. We estimate that approximately 50% of the rhesus gene models are missing, incomplete or incorrect. The problems identified in this work likely apply to all draft vertebrate genomes annotated with any automated gene model pipeline and thus represent a pervasive challenge to the analysis of draft genomes

    Exome Screening to Identify Loss-of-Function Mutations in the Rhesus Macaque for Development of Preclinical Models of Human Disease

    Get PDF
    BACKGROUND: Exome sequencing has been utilized to identify genetic variants associated with disease in humans. Identification of loss-of-function mutations with exome sequencing in rhesus macaques (Macaca mulatta) could lead to valuable animal models of genetic disease. Attempts have been made to identify variants in rhesus macaques by aligning exome data against the rheMac2 draft genome. However, such efforts have been impaired due to the incompleteness and annotation errors associated with rheMac2. We wished to determine whether aligning exome reads against our new, improved rhesus genome, MacaM, could be used to identify high impact, loss-of-function mutations in rhesus macaques that would be relevant to human disease. RESULTS: We compared alignments of exome reads from four rhesus macaques, the reference animal and three unrelated animals, against rheMac2 and MacaM. Substantially more reads aligned against MacaM than rheMac2. We followed the Broad Institute\u27s Best Practice guidelines for variant discovery which utilizes the Genome Analysis Toolkit to identify high impact mutations. When rheMac2 was used as the reference genome, a large number of apparent false positives were identified. When MacaM was used as the reference genome, the number of false positives was greatly reduced. After examining the variant analyses conducted with MacaM as reference genome, we identified two putative loss-of-function mutations, in the heterozygous state, in genes related to human health. Sanger sequencing confirmed the presence of these mutations. We followed the transmission of one of these mutations (in the butyrylthiocholine gene) through three generations of rhesus macaques. Further, we demonstrated a functional decrease in butyrylthiocholinesterase activity similar to that observed in human heterozygotes with loss-of-function mutations in the same gene. CONCLUSIONS: The new MacaM genome can be effectively utilized to identify loss-of-function mutations in rhesus macaques without generating a high level of false positives. In some cases, heterozygotes may be immediately useful as models of human disease. For diseases where homozygous mutants are needed, directed breeding of loss-of-function heterozygous animals could be used to create rhesus macaque models of human genetic disease. The approach we describe here could be applied to other mammals, but only if their genomes have been improved beyond draft status

    De Novo Assembly of the Chimpanzee Transcriptome from NextGen mRNA Sequences

    Get PDF
    BACKGROUND: Common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) are the species most closely related to humans. For this reason, it is especially important to have complete and accurate chimpanzee nucleotide and protein sequences to understand how humans evolved their unique capabilities. We provide transcriptome data from four untransformed cell types derived from the reference Pan troglodytes, Clint , to better annotate the chimpanzee genome and provide empirical validation for proposed gene models of this important species. FINDINGS: RNA was extracted from primary cells cultured from four tissues: skin, adipose stroma, vascular smooth muscle and skeletal muscle. These four RNA samples were sequenced on the Illumina HiSeq 2000 platform. Sequences were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). Transcripts were assembled, annotated and deposited in the NCBI Transcriptome Shotgun Assembly (TSA) database. CONCLUSIONS: We have provided a high quality annotation of 44,275 transcripts with full-length coding sequence (CDS). This set represented a total of 10,110 unique genes, thus providing empirical support for their existence. This dataset can be used to improve the annotation of the Pan troglodytes genome
    corecore