2,050 research outputs found
Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics
Phase transitions of atmospheric water play a ubiquitous role in the Earth's
climate system, but their direct impact on atmospheric dynamics has escaped
wide attention. Here we examine and advance a theory as to how condensation
influences atmospheric pressure through the mass removal of water from the gas
phase with a simultaneous account of the latent heat release. Building from the
fundamental physical principles we show that condensation is associated with a
decline in air pressure in the lower atmosphere. This decline occurs up to a
certain height, which ranges from 3 to 4 km for surface temperatures from 10 to
30 deg C. We then estimate the horizontal pressure differences associated with
water vapor condensation and find that these are comparable in magnitude with
the pressure differences driving observed circulation patterns. The water vapor
delivered to the atmosphere via evaporation represents a store of potential
energy available to accelerate air and thus drive winds. Our estimates suggest
that the global mean power at which this potential energy is released by
condensation is around one per cent of the global solar power -- this is
similar to the known stationary dissipative power of general atmospheric
circulation. We conclude that condensation and evaporation merit attention as
major, if previously overlooked, factors in driving atmospheric dynamics
Comment on "The Tropospheric Land-Sea Warming Contrast as the Driver of Tropical Sea Level Pressure Changes" by Bayr and Dommenget
T Bayr and D Dommenget [J. Climate 26 (2013) 1387] proposed a model of
temperature-driven air redistribution to quantify the ratio between changes of
sea level pressure and mean tropospheric temperature in the
tropics. This model assumes that the height of the tropical troposphere is
isobaric. Here problems with this model are identified. A revised relationship
between and is derived governed by two parameters -- the isobaric
and isothermal heights -- rather than just one. Further insight is provided by
the model of R S Lindzen and S Nigam [J. Atmos. Sci. 44 (1987) 2418], which was
the first to use the concept of isobaric height to relate tropical to air
temperature, and did this by assuming that isobaric height is always around 3
km and isothermal height is likewise near constant. Observational data,
presented here, show that neither of these heights is spatially universal nor
do their mean values match previous assumptions. Analyses show that the ratio
of the long-term changes in and associated with land-sea
temperature contrasts in a warming climate -- the focus of Bayr and Dommenget
[2013] -- is in fact determined by the corresponding ratio of spatial
differences in the annual mean and . The latter ratio, reflecting
lower pressure at higher temperature in the tropics, is dominated by meridional
pressure and temperature differences rather than by land-sea contrasts.
Considerations of isobaric heights are shown to be unable to predict either
spatial or temporal variation in . As noted by Bayr and Dommenget [2013],
the role of moisture dynamics in generating sea level pressure variation
remains in need of further theoretical investigations.Comment: 26 pages, 11 figures. arXiv admin note: text overlap with
arXiv:1404.101
Radiatively induced leptogenesis in a minimal seesaw model
We study the possibility that the baryon asymmetry of the universe is
generated in a minimal seesaw scenario where two right-handed Majorana
neutrinos with degenerate masses are added to the standard model particle
content. In the usual framework of thermal leptogenesis, a nonzero
asymmetry can be obtained through the mass splitting induced by the running of
the heavy Majorana neutrino masses from their degeneracy scale down to the
seesaw scale. Although, in the light of the present neutrino oscillation data,
the produced baryon asymmetry turns out to be smaller than the experimental
value, the present mechanism could be viable in simple extensions of the
standard model.Comment: 6 pages, 2 figures, uses RevTeX4, calculations improved, comments
adde
Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site
Forests around Manaus have staged the oldest and the longest forest-atmosphere CO2 exchange studies made anywhere in the Amazon. Since July 1999 the exchange of CO2, water, and energy, as well as weather variables, have been measured almost continuously over two forests, 11 km apart, in the Cuieiras reserve near Manaus, Brazil. This paper presents the sites and climatology of the region based upon the new data sets. The landscape consists of plateaus dissected by often waterlogged valleys, and the two sites differ in terms of the relative areas of those two landscape components represented in the tower footprints. The radiation and wind climate was similar to both towers. Generally, both the long-wave and short-wave radiation input was less in the wet than in the dry season. The energy balance closure was imperfect (on average 80%) in both towers, with little variation in energy partitioning between the wet and dry seasons; likely a result of anomalously high rainfall in the 1999 dry season. Fluxes of CO2 also showed little seasonal variation except for a slightly shorter daytime uptake duration and somewhat lower respiratory fluxes in the dry season. The net effect is one of lower daily net ecosystem exchange (NEE) in the dry season. The tower, which has less waterlogged valley areas in its footprint, measured a higher overall CO2 uptake rate. We found that on first sight, NEE is underestimated during calm nights, as was observed in many other tower sites before. However, a closer inspection of the diurnal variation of CO2 storage fluxes and NEE suggests that at least part of the nighttime deficits is recovered from either lateral influx of CO2 from valleys or outgassing of soil storage. Therefore there is a high uncertainty in the magnitude of nocturnal NEE, and consequently preliminary estimates of annual carbon uptake reflecting this range from 1 to 8 T ha-1 y-1, with an even higher upper range for the less waterlogged area. The high uptake rates are clearly unsustainable and call for further investigations into the integral carbon balance of Amazon landscapes
A Bridge between CP violation at Low Energies and Leptogenesis
We discuss the possibility of relating the size and sign of the observed baryon asymmetry of the universe to CP violation observable at low energies, in a framework where the observed baryon asymmetry is produced by leptogenesis through the out of the equilibrium decay of heavy Majorana neutrinos. We identify the CP violating phases entering in leptogenesis as well as those relevant for CP violation at low energies in the minimal seesaw model. We show that although in general there is no relation between these two sets of phases, there are specific frameworks in which such a connection may be established and we give a specific grand unification inspired example where such a connection does exist. We construct weak-basis invariants related to CP violation responsible for leptogenesis, as well as those relevant for CP violation at low energies
Deployment of spatial attention towards locations in memory representations: an EEG study
Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target
Heat engines and heat pumps in a hydrostatic atmosphere: How surface pressure and temperature constrain wind power output and circulation cell size
The kinetic energy budget of the atmosphere's meridional circulation cells is
analytically assessed. In the upper atmosphere kinetic energy generation grows
with increasing surface temperature difference \$\Delta T_s\$ between the cold
and warm ends of a circulation cell; in the lower atmosphere it declines. A
requirement that kinetic energy generation is positive in the lower atmosphere
limits the poleward cell extension \$L\$ of Hadley cells via a relationship
between \$\Delta T_s\$ and surface pressure difference \$\Delta p_s\$: an upper
limit exists when \$\Delta p_s\$ does not grow with increasing \$\Delta T_s\$.
This pattern is demonstrated here using monthly data from MERRA re-analysis.
Kinetic energy generation along air streamlines in the boundary layer does not
exceed \$40\$~J~mol\$^{-1}\$; it declines with growing \$L\$ and reaches zero
for the largest observed \$L\$ at 2~km height. The limited meridional cell size
necessitates the appearance of heat pumps -- circulation cells with negative
work output where the low-level air moves towards colder areas. These cells
consume the positive work output of the heat engines -- cells where the
low-level air moves towards the warmer areas -- and can in theory drive the
global efficiency of atmospheric circulation down to zero. Relative
contributions of \$\Delta p_s\$ and \$\Delta T_s\$ to kinetic energy generation
are evaluated: \$\Delta T_s\$ dominates in the upper atmosphere, while \$\Delta
p_s\$ dominates in the lower. Analysis and empirical evidence indicate that the
net kinetic power output on Earth is dominated by surface pressure gradients,
with minor net kinetic energy generation in the upper atmosphere. The role of
condensation in generating surface pressure gradients is discussed.Comment: 26 pages, 9 figures, 2 tables; re-organized presentation, more
discussion and a new figure (Fig. 4) added; in Fig. 3 the previously
invisible dots (observations) can now be see
Enhancement of the ferromagnetic order of graphite after sulphuric acid treatment
We have studied the changes in the ferromagnetic behavior of graphite powder
and graphite flakes after treatment with diluted sulphuric acid. We show that
this kind of acid treatment enhances substantially the ferromagnetic
magnetization of virgin graphite micrometer size powder as well as in graphite
flakes. The anisotropic magnetoresistance (AMR) amplitude at 300 K measured in
a micrometer size thin graphite flake after acid treatment reaches values
comparable to polycrystalline cobalt.Comment: 3.2 pages, 4 figure
- …
