4,695 research outputs found

    Dispersion and the electron-phonon interaction in a single heterostructure

    Get PDF
    We investigate the electron-phonon interaction in a polar-polar single heterostructure through the use of the linear combination of hybrid phonon modes, considering the role of longitudinal optical, transverse optical and interface modes, using a continuum model that accounts for both mechanical and electrical continuity over a heterostructure interface. We discuss the use of other models for such systems, such as the bulk phonon (3DP) and dielectric continuum (DC) models, using previously developed sum-rules to explain the limitations on their validity. We find that our linear combination (LC) model gives an excellent agreement with scattering rates previously derived using the 3DP and DC models when the lattice dispersion is weak enough to be ignored, however, when there is a noticeable lattice dispersion, the LC model returns a different answer, suggesting that interface modes play a much greater part in the scattering characteristics of the system under certain conditions. We also discuss the remote phonon effect in polar/polar heterostructures

    Bearing-only acoustic tracking of moving speakers for robot audition

    Get PDF
    This paper focuses on speaker tracking in robot audition for human-robot interaction. Using only acoustic signals, speaker tracking in enclosed spaces is subject to missing detections and spurious clutter measurements due to speech inactivity, reverberation and interference. Furthermore, many acoustic localization approaches estimate speaker direction, hence providing bearing-only measurements without range information. This paper presents a probability hypothesis density (PHD) tracker that augments the bearing-only speaker directions of arrival with a cloud of range hypotheses at speaker initiation and propagates the random variates through time. Furthermore, due to their formulation PHD filters explicitly model, and hence provide robustness against, clutter and missing detections. The approach is verified using experimental results

    Optical and ROSAT X-ray observations of the dwarf nova OY Carinae in superoutburst and quiescence

    Full text link
    We present ROSAT X-ray and optical light curves of the 1994 February superoutburst of the eclipsing SU UMa dwarf nova OY Carinae. There is no eclipse of the flux in the ROSAT HRI light curve. Contemporaneous `wide B' band optical light curves show extensive superhump activity and dips at superhump maximum. Eclipse mapping of these optical light curves reveals a disc with a considerable physical flare, even three days into the superoutburst decline. We include a later (1994 July) ROSAT PSPC observation of OY Car that allows us to put constraints on the quiescent X-ray spectrum. We find that while there is little to choose between OY Car and its fellow high inclination systems with regard to the temperature of the emitting gas and the emission measure, we have difficulties reconciling the column density found from our X-ray observation with the column found in HST UV observations by Horne et al. (1994). The obvious option is to invoke time variability.Comment: 16 pages, 14 figures, accepted for publication in MNRA

    Dipolar atomic spin ensembles in a double-well potential

    Full text link
    We experimentally study the spin dynamics of mesoscopic ensembles of ultracold magnetic spin-3 atoms located in two separated wells of an optical dipole trap. We use a radio-frequency sweep to selectively flip the spin of the atoms in one of the wells, which produces two separated spin domains of opposite polarization. We observe that these engineered spin domains are metastable with respect to the long-range magnetic dipolar interactions between the two ensembles. The absence of inter-cloud dipolar spin-exchange processes reveals a classical behavior, in contrast to previous results with atoms loaded in an optical lattice. When we merge the two subsystems, we observe spin-exchange dynamics due to contact interactions which enable the first determination of the s-wave scattering length of 52Cr atoms in the S=0 molecular channel a_0=13.5^{+11}_{-10.5}a_B (where a_B is the Bohr radius).Comment: 9 pages, 7 figure

    IUE observations of the 1987 superoutburst of the dwarf nova Z Cha

    Get PDF
    Low resolution IUE observations of the dwarf nova Z Cha during superoutburst are presented. These cover most of the development of the outburst and have sufficient time resolution to probe continuum and line behavior on orbital phase. The observed modulation on this phase is very similar to that observed in the related object OY Car. The results imply the presence of a cool spot on the edge of the edge of the accretion disk, which periodically occults the brighter inner disk. Details of the line behavior suggest that the line originated in an extended wind-emitting region. In contrast to archive spectra obtained in normal outburst, the continuum is fainter and redder, indicating that the entire superoutburst disk may be geometrically thicker than during a normal outburst

    Spatial Statistics in Star Forming Regions: Testing the Limits of Randomness

    Get PDF
    This is the author accepted manuscript. the final version is available from OUP via the DOI in this recordObservational studies of star formation reveal spatial distributions of Young Stellar Objects (YSOs) that are ‘snapshots’ of an ongoing star formation process. Using methods from spatial statistics it is possible to test the likelihood that a given distribution process could produce the observed patterns of YSOs. The aim of this paper is to determine the usefulness of the spatial statistics tests Diggle’s G function (G), the ‘free-space’ function (F), Ripley’s K and O-ring for application to astrophysical data. The spatial statistics tests were applied to simulated data containing 2D Gaussian clusters projected on random distributions of stars. The number of stars within the Gaussian cluster and number of background stars were varied to determine the tests’ ability to reject complete spatial randomness (CSR) with changing signal-to-noise. The best performing test was O-ring optimised with overlapping logarithmic bins, closely followed by Ripleys K. The O-ring test is equivalent to the 2-point correlation function. Both F and G (and the minimum spanning tree, of which G is a subset) performed significantly less well, requiring a cluster with a factor of two higher signal-to-noise in order to reject CSR consistently. We demonstrate the tests on example astrophysical datasets drawn from the Spitzer catalogue.Science and Technology Facilities Council (STFC
    • …
    corecore