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Abstract 

We investigate the electron-phonon interaction in a polar-polar single 
heterostructure through the use of the linear combination of hybrid phonon 
modes, considering the role of longitudinal optical, transverse optical and 
interface modes, using a continuum model that accounts for both mechanical and 
electrical continuity over a heterostructure interface. We discuss the use of other 
models for such systems, such as the bulk phonon (3DP) and dielectric 
continuum (DC) models, using previously developed sum-rules to explain the 
limitations on their validity. We find that our linear combination (LC) model 
gives an excellent agreement with scattering rates previously derived using the 
3DP and DC models when the lattice dispersion is weak enough to be ignored, 
however, when there is a noticeable lattice dispersion, the LC model returns a 
different answer, suggesting that interface modes play a much greater part in the 
scattering characteristics of the system under certain conditions. We also discuss 
the remote phonon effect in polar/polar heterostructures. 
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1. Introduction 
For many semiconductor nanostructures of engineering interest, the focus of 

theory is on the interaction of electrons with the polar optical modes of the 
material, and it is this interaction that is central to the subject of the present 
paper.  The classical treatment of polar optical waves by Born and Huang [1] 
focuses on electromagnetic dispersion, but ignores lattice dispersion.   Most 
subsequent treatments of the interaction with electrons have also ignored lattice 
dispersion, since the interaction favours long waves, which are only weakly 
affected by lattice dispersion. In bulk materials, this is a reasonable assumption 
to make. However, when investigating nanostructures, the confinement tends to 
eliminate these long waves and the presence of the interface (IF) modes requires 
the existence of dispersion. In what follows we demonstrate that this is the case 
and discuss the limits of validity of other approaches that use simple models to 
determine the scattering in nanostructures. 

There are two aspects to this problem: (1) the nature of the confinement of 
electrons in structures of nanometre dimensions, and (2) the nature of 
confinement of the polar optical phonons.   In both cases confinement is 
governed by appropriate connection rules that apply at the boundaries of the 
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structure.  For electrons, the connection rules are the continuity of the wave 
function and of its gradient. Where the wavefunction is a Bloch function, it turns 
out that in most cases, the continuity of the gradient of the wavefunction can be 

replaced by the continuity of 
dz

zdF

m

)(

*
1 , where m* is the effective mass and F(z) is 

the envelope function, with z along the normal to the boundary [2].   (For 
conditions under which this replacement may fail, see [3].)   For polar modes, the 
connection rules are the continuity of ionic displacement (u) and mechanical 
stress, together with the standard electromagnetic boundary conditions [4-8].  
Satisfaction of these rules determines the allowed eigenstates of the phonons.   
Such modes in the continuum model take the form of hybrid modes, which are 
the linear combination (LC) of longitudinally polarized optical (LO) modes, 
transversely polarized optical (TO) modes, and interface (IF) modes, all 
necessarily at the same frequency. The resultant waveforms derived in the 
continuum model are in excellent agreement with those derived numerically in 
microscopic models of the lattice dynamics [9]. The LC (or hybrid) model, 
although a continuum model, therefore reliably describes the correct 
eigenfunctions. 

Nevertheless, in most calculations of the electron-phonon interaction, it is 
common practice to ignore the mechanical connection rules and rely solely on 
the electromagnetic boundary conditions, regarding the material as simply a 
dielectric continuum, an approach that dates back to Fuchs and Kliewer’s 
treatment of the polar slab, which introduced electromagnetic interface modes 
[10].   Subsequently, this dielectric continuum (DC) model has been the model of 
choice (or the foundation of other models, such as the Huang-Zhu model) in the 
evaluation of the electron-phonon interaction [11-13].   An even simpler model 
that has been used frequently is to regard the polar modes as three-dimensional 
phonons (3DP) [8, 14, 15]. Neither the DC nor the 3DP model use the correct 
normal modes, but they seek justification in sum-rules that claim that the total 
electron-phonon scattering rate is independent of the phonon basis set, provided 
it is complete and orthonormal and satisfies both mechanical and 
electromagnetic boundary conditions [16, 17]. Register’s sum-rule includes the 
necessity all modes have the same frequency [16].   Mori and Ando made a 
closely related claim with their sum-rule, stating that all modes should have the 
same interaction strength [18]. Conversely, the DC model, which takes LO, 
barrier IF and well IF modes into account, suggests that all these modes are of 
different frequencies and strength (which is at odds with the premises of these 
sum-rules), and thus, this justification for use of the sum-rules to validate these 
models is flawed. While it is interesting to note that the use of this sum-rule can 
seem valid in many situations, for example, it has been found that a comparison 
of LC and DC rates for a quantum well support these sum-rules [19], it is 
extremely important to note there are situations where the use of these sum-
rules break down when using these simpler models - a recent comparison of 3DP 
and DC rates in a single heterojunction shows some departure from these rules 
[20]. These sum-rules further assume a thermodynamic equilibrium spectrum 
for the phonons and therefore cannot be expected to hold in cases where there 
are hot phonons effects or coupling between plasmons and phonons. Such hot 
phonons and coupled modes are bound to be present in high-power 
nanostructure devices, further reducing the justification for the use of the sum-
rules to validate the models when used for nanostructures. We therefore deduce 
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that sum-rule predictions have only limited validity and that the LC model can 
give a more reliable description of the electron-phonon interaction in 
nanostructures. 

In what follows, we present, for the first time (as far as the authors are 
aware), an application of the LC model to the case of a single heterostructure in 
which there is a quasi-2D electron gas established in the well at the interface 
between barrier and well due to barrier polarization. In Section 2, we apply the 
LC model to a heterostructure, and we note that the polarity of the materials 
mean that fields are induced in the adjacent layers, allowing the phenomenon of 
remote-impurity scattering. This in turn excites ionic displacements that have to 
be considered in establishing the connection rules at the interface. In Section 3 
we derive expressions for the scattering rate. We show that the model can be 
simply interpreted in terms of a LO-like contribution and an IF-like contribution, 
similar to the DC model. In Section 4 we discuss the role of lattice dispersion and 
make a comparison with the results obtained by the DC and 3DP models. We 
then draw conclusions on this work in Section 5. In many practically important 
cases coupled modes and hot phonons make their appearance, rendering simple 
models inapplicable.  In these cases, the LC model must be used. 

Throughout this communication we adopt the simplifying assumption of 
isotropy and assume dispersion is quadratic in wave vector. We also assume that 
the crystals that make up the heterostructure are both polar, though we note 
that the effects of remote-impurity scattering can be eliminated if one of the 
components of the heterostructure is non-polar. 

 
2. The LC Model 
We model our heterostructure as two polar materials, joined at a simple, 

straight interface. The materials are assumed to be large enough to not cause any 
confinement effects above those caused by the interface itself. We take the z 
direction to be normal to the interface between barrier and well situated at z=0; 
and, exploiting isotropy, we take the x direction to be in the plane of the 
interface. We define the barrier to be in the region z≤0, and the well to be in the 
region z≥0. This model of the heterostructure is depicted in Figure 1, along with 
the phonon modes that we consider.  

Satisfying the mechanical connection rules in general is not a trivial problem. 
Unlike the corresponding rules for acoustic modes, the boundary conditions for 
optical modes involve the spatial variation of ionic mass, a complication first 
pointed out by Akero and Ando [21] and confirmed in detail using a microscopic 
model by Foreman and Ridley [7].   Establishing connection rules across the 
interface between barrier and well involves the consideration of the variation of 
not only the mass, but also the force constants, the elastic stress and the 
amplitude of the ionic displacement.   Fortunately, in most practical cases, the 
disparity of the properties between barrier and well are so large that it is 
reasonable to adopt the simple condition that there is no ionic displacement at 
the boundary, that is, u=0 at z=0. 

In the well (z≥0), we take the x and z components of the particle 
displacement to be a linear combination of LO, IF and TO components, observing 
that the TO displacement has both x and z components: 
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q (its components being qx & qz) is the wave vector and all components have the 
same frequency, that of the LO component. Including the wave vector amplitudes 
means that the LO components can be seen to satisfy the condition        , 
and the IF and TO components satisfy         (and         as a result of 
adopting the unretarded model). The lattice dispersion, assumed to be quadratic, 
gives: 

)(v 22222

zxLL qq          2 

 
 

where L  is the zone-centre LO frequency and vL is a velocity (which in the 

simplest case is the velocity of longitudinal acoustic phonons.)  
The TO frequency is similarly described: 

)(v 22222

TxTT qq          3 

 

where T  is the zone-centre TO frequency and Tq  is the TO wave-vector.  

Extension to the complex band structure allows the frequency to be equal to the 

LO frequency, setting 22 Tq  yields: 

  22222122
2 zxLTLvx qqvq
T

                          4 

 

The IF mode is determined by electromagnetic dispersion, )( 2222

IFx qqc  , 

where c is the velocity of light and qIF is the wavevector of the interface mode.   
The latter is comparatively very large, so for the frequency to be equal the LO 

frequency, 22

xIF qq  . 

Associated with these displacements in the well is an electric field: 



E  0

1

() 
u        5 

where: 



0 
e*

V0
,    e*2 T

2 M V0( s )      6 

e* is the ionic charge, T  is the TO frequency, V0 is the volume of the unit cell, 

,s  are the static and high-frequency permittivities and  is the reduced mass 

of the optical vibration.  There is also an induced field in the barrier: 



EBx  qxFe i(qxxt )qxz

EBz  iqxFe i(qxxt )qxz         z  0
      7 

The dielectric functions associated with the LO mode (including the effect of 
dispersion) and the IF mode are: 



LO() 
 2 L

2  vL

2 (qx

2 qz

2)

 2 T

2  vL

2 (qx

2 qz

2)
 0     8 



IF  
 2 L

2

 2 T

2         9 
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The electric displacement for the LO component is D=0. The TO component has 
no electric field. 
 We choose amplitudes B, C and D to satisfy u=0 and the electric field to 
satisfy the electric boundary conditions. As a result we obtain: 



ux  Aqxe
i(qxxt ) cosqzz sinqzz  peqxz  [(p 1) /]ez 

uz  iAqze
i(qxxt ) sinqzz cosqzz  (qx /qz)peqxz  (qx /qz )[qx(p 1) /]ez 
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

  (qx /qz )p[1 (qx /p)(p 1)]

p  [s(1 r)]1
      11 

The factors s and r are, respectively, the field factor and the permittivity ratio 
associated with the IF mode: 



s 
 2 T

2

 L

2 T

2

r  W () /B ()

        12 

The subscripts W and B refer to the property associated with the well and 
barrier, respectively. The amplitude of the field in the barrier is: 



F  0srpA         13 

We can now exploit the weakness of the lattice dispersion and take 
 .   This effectively removes the effect of the TO mode except for its role in 

eliminating ux .   With this simplification the scattering potential is given by: 



  i0Ae i(qxxt ) cosqzz sinqzz  speqxz 
  (qx /qz )p

     14 

 Finally, we relate the amplitude to the phonon number operators via 
energy normalization: 
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

Q2 
1

2
(qx

2 qz

2)(12)
pqx (2 p)

L

L
 

1

2
(qx

2 qz

2)(12)  16 

  
We have assumed periodic boundary conditions, and, taking L as very large, we 
have ignored the contribution to the total energy from the induced modes in the 
barrier. 
2.1 Remote-phonon effects 
 The optical modes in the barrier can be treated similarly.   As a result, 
fields at the barrier frequency are induced in the well whose amplitude is the 
barrier equivalent of eq. 13: 



EWx  qx0BsB r1pB ABeqxz

EWz  iqx0B sBr1pB ABeqxz

pB  [sB (1 r1)]1

       17 

The subscript B indicates barrier properties, e.g. frequencies TBLB    , etc.   The 

potential associated with these fields is: 



B  i0BsB pB ABeqxz        18 



 6 

where AB is the barrier equivalent of A in eq. 15.   The effect of this potential on 
electrons in the well is referred to, somewhat confusingly, as remote-phonon 
(RP) scattering. Its role in determining the scattering rate in the well is weak, 
except in the case when r=-1. As well as the scattering, there is another aspect of 
the RP effect than needs to be considered.   In polar materials, fields are related 
to ionic displacement (eq. 5).    This implies that RP fields induce ionic 
displacements that would seem to violate the condition that u=0 at the interface.   
As shown in Appendix A, the condition u=0 is maintained by the induction of a 
hybrid of evanescent LO and TO modes at the barrier frequency. 

It is important to note that RP modes will only occur if the heterostructure is 
a polar/polar structure. A polar/non-polar structure would eliminate RP 
scattering in the polar region. 
 

3. Scattering rate 
The scattering rate can be written: 



W 
2

h

1

N
Hep

2

(E 'E  h)N(E ')
q

     19 

The interaction Hamiltonian is: 

  drrrr )()()(* eH ep        20 

A convenient choice of the electron wavefunctions for transitions within the 
ground state is the Fang-Howard form: 



(r) 1/ 2e ikx(z)
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b3
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1/ 2
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33e2m * Ne

8 sh
2
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1/ 3
    21 

Integration over the area of the interface ( ) gives: 



Hep k' x ,kx qx
(z)2e(z)dz

0

L

        22 

which defines k’x in terms of the initial electron wave vector and qx.   It is 
convenient to express the potential with energy normalisation 
as follows: 
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This extracts the dependence on qz and z. Converting the sum to an integral over 
qz and extending the limits to ±∞ enables us to write: 



G(qx,qz,z',z)  f (qx,qz,z') f (qx,qz,z)dqzL /2




 G1(qx )G2(z',z)   24 

The integral over z defines a form factor: 

 dzdzzzGzzqF x '),'()()'()( 2

22       25 

The scattering rate then takes the form: 



W W0

1

2

2m *L

h
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L
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k
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dqx
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m* is the electron effective mass, n is the phonon number, k is the electron wave 
vector, and   is the scattering angle.   Here, the weak dependence of frequency 
on wave vector has been ignored, and this allows us to make LO-like and IF-like 
models, as we will show.   In an analytic treatment the lattice dispersion should, 
of course, be included.   
 There are two aspects of the LC model that depend on the value of r, the 
ratio of the permittivities.   Being a function of frequency, r varies with the 
dispersion; for long waves r~0 and the LC is LO-like, but at and near the critical 
condition r=-1, the LC is IF-like. Clearly, an accurate assessment of the overall 
rate calls for numerical work, but a useful insight can be obtained from an 
approximate analytical model that exploits the weakening of the interaction with 
electrons towards large wave vectors. 

For small wave vectors we may put r~0 , p~1 and s~1, essentially 
ignoring dispersion entirely.  The LC is then LO-like and the integration over qz 

gives: 



G(qx,qz,z',z) 
L

2qx

eqx z'z  eqx z'z      28 

Thus, for  the LO-like case: 



G1(qx) 
L

2qx

,   G2(z',z)  eqx z'z  eqx z'z
     29 

    

from which the form factor can be calculated.   The first term in the expression 
for G2 is that obtained for bulk phonons, the second for IF modes. Because the z 
component of the IF mode displacement is opposed to that of the LO component, 
the accompanying fields are also opposed, hence the minus sign.   Moreover, in 
the absence of dispersion there is no remote-phonon effect and the IF 
contribution is simply to counter the effect of the LO mode. 
 For r~-1, the integration is less straightforward -  p–>∞ , and the modes 
contributed by the barrier become important. This condition occurs at two 

frequencies  ,   being barrier-like,   being well-like, in what follows, the 

subscripts + and – refer to barrier and well-like properties when this condition 
(at r~-1) is met. 

At both frequencies, the wave vectors at which the condition occurs are 
typically very large.  The conservation of crystal momentum restricts qx to be 

typically of order 2/1

0 )/*2( mq  , which is relatively small, in which case qz is 

typically very large, say qz- associated with the lower frequency, qz+ associated 
with the upper frequency.    The scattering potential is then dominated by the 
well and barrier IF components, each having the form: 



f (qx,qz,z') f (qx,qz,z) 
1

Q2(qx,qz)
s2 p2eqx z'z 

2s2eqx z'z

qz

2s2(1 r)2 qx

2 
  30 

We have assumed that qz>>qx.  We can then evaluate the integral over qz for the 
well by putting 
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Similarly, for the barrier mode: 
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where qzW and qzB are the values of qz in the well and barrier respectively, 
corresponding to the condition 1+r=0. We have further defined  
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For a derivation of T±2, refer to Appendix B. Ignoring the variation in the field 
factor with qz, we obtain: 



G(qx,qz,z'z) 
L

2qx

s
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2qx
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2
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    34  

2222   , LBLLWL     
Thus, for the IF –like case: 



G1(qx) 
L

2qx

s

r(L

2 

2)
2

,    G2(z',z)  eqx z'z     35 

G1 and G2 can be used in eq. 26 for the RP barrier rate , where p  and the LO 

frequency are quantities determined by the properties of the barrier. 
 In summary, we note that the overall scattering rate can be seen 
approximately to be the sum of three processes: 



Wtotal WWLO r0 WWIF 1r0 WBIF 1r0      36 

 
In this respect of this structure the LC model and the DC model are in  
agreement. 
 
4. Discussion 
 It is interesting to observe that in the absence of lattice dispersion the 
hybrid modes are purely LO-like in the meaning of our previous discussion.   
There are no RP effects, and the role of the IF mode is to reduce scattering.   To 
include dispersion is therefore essential in any coherent theory of the electron-
phonon interaction in the case of the single heterojunction, or, indeed, any other 
nanostructure, otherwise that famous condition associated with IF modes, 
1+r=0, becomes unachievable without resorting to the complex dispersion 
branches. The DC model, by its very nature, has no need for dispersion other 
than that associated with electromagnetic waves, and it can consider the 
existence of IF modes and their accompanying condition 1+r=0 as a purely 
electric phenomenon. 
 We remind the reader of the basic elements of the DC model following 
Mori and Ando [18].    It chooses two modes that independently obey the 
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electrical connection rules, but not the mechanical ones.   These modes are LO 
and IF, normalized in the cavity –L <z< L with the interface at z=0.   The half-
space LO has the potential: 

2/1

22
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The IF potential is: 

    38 

As regards scattering rates, the half-space LO mode gives: 
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2
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Comparing this with eq. 29, the scattering rate for LO modes as determined by 
the LC model, we note that the rate is the same. We can also see that it is the 
same as that for the zero-dispersion model. This should not be a surprising 
result, recall that when deriving expressions for the LO-like modes, we set 
parameters that essentially ignored the lattice dispersion. 

The IF mode has no dependence on qz and gives the rate: 

  
          40 
Comparing this with eq. 35, we can immediately see that this rate is quite a 
different result from that predicated by the LC model. This can, at least partially, 
be attributed to the inclusion of lattice dispersion in the LC model, something 
that is neglected in DC and 3DP models. 
 It is clear that there is a close similarity between the two models, but the 
details are different and the agreement can only be approximate.   Nevertheless, 
where the contribution from the IF mode is weak, (Mori and Ando point out this 
is frequently the case [18]), the agreement can be close. 
 We can also see that in the 3DP model, the rate is almost the same as the 
LC model with zero dispersion, the exception in the rate being: 

zzq

x

xe
q
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2
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Compare this with eqs. 29 and 39. We can see that, in comparison, eq. 41 only 
contains a“bulk phonon” term, neglecting the IF term entirely. However, as the IF 
modes contributions tend to be weak in both the LC and DC models, the 3DP 
model, neglecting this mode altogether, tends to be a reasonable approximation 
to make. 
 We can see (from eq. 8) that dispersion does not alter the dielectric 
function associated with the LO component. We have assumed that the strength 
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of the interaction with the electron, principally involving long wavelength 
phonons, is not affected by dispersion. The implication of this is that the effective 
ionic charge is not a function of wave vector, but this needs to be examined 
critically. 
 Whilst we have analysed the scattering in the heterostructure close to 
thermodynamic equilibrium through the use of the LC model, in high-power 
devices, the conditions are far from being in such equilibrium. The sum-rules 
that were used to validate the various simple models assume thermodynamic 
equilibrium for the phonons, thus, the use of these simple models to describe the 
electron-phonon interaction in such cases is questionable. The simple models in 
question include the LO-like and IF-like analysis of the LC model, whose results 
are encapsulated in eqs. (28-36).  In practical systems the electrons become 
extremely hot and the phonon population is driven far from thermodynamic 
equilibrium. The hot phonon populations are far from being uniform over 
frequency, as a consequence of variations in emission rate and phonon lifetime. 
There are also coupled-mode effects, which are limited to small wave vectors 
where Landau damping is weak, and cause static screening where Landau 
damping is strong. While these simple models are limited to the zone-centre LO 
frequency and the IF frequencies, the relevant phonon numbers are far from 
equilibrium values, and have to be determined in (ideally) a self-consistent way. 
 

5. Conclusions 
We have described a model of polar optical phonons in a single 

heterostructure in which both mechanical and electrical boundary conditions are 
satisfied and lattice dispersion is taken into account.   This is shown to require a 
linear combination LO, TO and IF modes. Using an approximation that ignores 
the contribution of the TO mode everywhere except at the interface between 
barrier and well, we give expressions for the resultant electron scattering rates.   
We then describe a model in which the hybrid modes can be approximately 
analysed as LO-like or IF-like.   A comparison is made with the DC model, which 
ignores mechanical boundary conditions, revealing a similarity of form but 
differences of detail. We conclude that the DC model can give only an 
approximate account of the electron-phonon interaction, with agreement getting 
better when the contribution from the IF modes is weak. A weak contribution 
from IF modes also supports the use of the bulk phonon approximation. It can be 
seen that if lattice dispersion is ignored, any positive contribution to the 
scattering rate from IF modes is eliminated, instead only reducing the scattering 
rate of the LO mode. Finally, we point out that in practical devices, the 
description of effects due to coupled plasmon-phonons and to hot phonons 
require the use of the correct eigenfunctions that the LC model provides. 

 
 
Acknowledgement 
The authors would like to thank the U.S Office of Naval Research for their 

support via Grant No. N00014-15-1-2200 & N00014-15-1-2193. 



 11 

Appendix A: Remote-Phonon evanescent modes  
  Because of lattice dispersion, electric fields at the well frequency 
appear in the barrier and, equally, electric fields at the barrier frequency appear 
in the well.   These fields are responsible for so-called remote-phonon scattering.   
Besides their effect on scattering, these remote-phonon fields are associated 
with corresponding lattice displacements according to eq. (5), which has 
consequences for the connection rules at the interface.   Thus, for example, the 
fields depicted in eq. (17) will be associated with displacement components ux 
and uz in the well, which are non-zero.   This violates the condition u=0 at the 
interface.   The condition is restored provided that the IF mode in the well is a 
component of a hybrid of LO and TO modes, all at the barrier frequency.   A 
corollary of our assumption that u=0 at the interface is that there is a large 
disparity between the frequencies of well and barrier; consequently, the LO and 
TO components will be heavily evanescent, with exponents derived from the 
optical-acoustic complex band structure.   The barrier hybrid at the well 
frequency then has the form (z>0): 



ux  ei(kxxt ) kxPeL z TQeT z  kx Rekxz 

uz  ie i(kxxt ) LPeL z  kxQeT z  kx Rekxz 
    A.1 

Solving for ux=0 and uz=0 leads to: 



ux  kx Re i(kx xt ) pL

1 pT

1 pL pT

eL z 
1 pL

1 pL pT

eT z  ekx z










ux  ikx Re i(kxxt ) 
1 pT

1 pL pT

eL z  pT

1 pL

1 pL pT

eT z  ekxz










   A.2 

In these equations: 



pL 
kx

L

,    pT 
kx

T

        A.3 

As regards the effect on the electrical connection rules, the TO component has no 

effect, while the large magnitude of L  make the contribution to the tangential 

field negligible.   The particle amplitude R can be obtained from the electric fields 
depicted in eq.(17), which are unchanged. 
 
 
Appendix B: Derivation of T 
 
What follows is a derivation of T-, but the steps can equally be applied to the 
derivation of T+. We start with the definition from eqns. (8), (12) and (31) to 
define 1+r, and defining  as the low frequency solution of 1+r=0: 
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Performing an expansion of these brackets, and discarding higher order terms 
(O(4) and above), we obtain 



 
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Noting that the Taylor Series expansion of  32

1
1 1 



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, we take the first 

two terms and subsequently collect like terms to obtain: 
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From our previous definition of  



 , 
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Figure 1: The polar-optical phonon modes generated by an LO mode striking the 
interface between the barrier and well. LO modes are reflected from the 
interface back into the well, and IF and TO modes are generated which are 
evanescent, propagating along the interface. TO modes only exist in the well, IF 
modes exist on both sides of the interface. 
 
 
 
 
 
 
 
Highlights 
 

 We use the Linear Chain (LC) model for phonons in a single 
heterostructure. 

 Excellent agreement with other models when neglecting dispersion. 
 Effects of lattice dispersion can be included and studied using the LC 

model. 
 Inclusion of dispersion suggests interface modes can have an important 

role. 
 




