1,494 research outputs found

    Wide-field LOFAR-LBA power-spectra analyses: Impact of calibration, polarization leakage and ionosphere

    Get PDF
    Contamination due to foregrounds (Galactic and Extra-galactic), calibration errors and ionospheric effects pose major challenges in detection of the cosmic 21 cm signal in various Epoch of Reionization (EoR) experiments. We present the results of a pilot study of a field centered on 3C196 using LOFAR Low Band (56-70 MHz) observations, where we quantify various wide field and calibration effects such as gain errors, polarized foregrounds, and ionospheric effects. We observe a `pitchfork' structure in the 2D power spectrum of the polarized intensity in delay-baseline space, which leaks into the modes beyond the instrumental horizon (EoR/CD window). We show that this structure largely arises due to strong instrumental polarization leakage (30%\sim30\%) towards {Cas\,A} (21\sim21 kJy at 81 MHz, brightest source in northern sky), which is far away from primary field of view. We measure an extremely small ionospheric diffractive scale (rdiff430r_{\text{diff}} \approx 430 m at 60 MHz) towards {Cas\,A} resembling pure Kolmogorov turbulence compared to rdiff320r_{\text{diff}} \sim3 - 20 km towards zenith at 150 MHz for typical ionospheric conditions. This is one of the smallest diffractive scales ever measured at these frequencies. Our work provides insights in understanding the nature of aforementioned effects and mitigating them in future Cosmic Dawn observations (e.g. with SKA-low and HERA) in the same frequency window.Comment: 20 pages, 11 figures, accepted for publication in MNRA

    A determination of H_0 with the CLASS gravitational lens B1608+656: II. Mass models and the Hubble constant from lensing

    Full text link
    EDITED FROM PAPER: We present mass models of the four-image gravitational lens system B1608+656. A mass model for the lens galaxies has been determined that reproduces the image positions, two out of three flux-density ratios and the model time delays. Using the time delays determined by Fassnacht et al. (1999a), we find that the best isothermal mass model gives H_0=59^{+7}_{-6} km/s/Mpc for Omega_m=1 and Omega_l=0.0, or H_0=(65-63)^{+7}_{-6} km/s/Mpc for Omega_m=0.3 and Omega_l = 0.0-0.7 (95.4% statistical confidence). A systematic error of +/-15 km/s/Mpc is estimated. This cosmological determination of H_0 agrees well with determinations from three other gravitational lens systems (i.e. B0218+357, Q0957+561 and PKS1830-211), SNe Ia, the S-Z effect and local determinations. The current agreement on H_0 from four out of five gravitational lens systems (i) emphasizes the reliability of its determination from isolated gravitational lens systems and (ii) suggests that a close-to-isothermal mass profile can describe disk galaxies, ellipticals and central cluster ellipticals. The average of H_0 from B0218+357, Q0957+561, B1608+656 and PKS1830-211, gives H_0(GL)=69 +/-7 km/s/Mpc for a flat universe with Omega_m=1 or H_0(GL)=74 +/-8 km/s/Mpc for Omega_m=0.3 and Omega_l=0.0-0.7. When including PG1115+080, these values decrease to 64 +/-11 km/s/Mpc and 68 +/-13 km/s/Mpc (2-sigma errors), respectively.Comment: Accepted for publication in ApJ. 34 pages, 4 figure

    A PCA-based automated finder for galaxy-scale strong lenses

    Get PDF
    We present an algorithm using Principal Component Analysis (PCA) to subtract galaxies from imaging data, and also two algorithms to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimized to find full or partial Einstein rings. Starting from a pre-selection of potential massive galaxies, we first perform a PCA to build a set of basis vectors. The galaxy images are reconstructed using the PCA basis and subtracted from the data. We then filter the residual image with two different methods. The first uses a curvelet (curved wavelets) filter of the residual images to enhance any curved/ring feature. The resulting image is transformed in polar coordinates, centered on the lens galaxy center. In these coordinates, a ring is turned into a line, allowing us to detect very faint rings by taking advantage of the integrated signal-to-noise in the ring (a line in polar coordinates). The second way of analysing the PCA-subtracted images identifies structures in the residual images and assesses whether they are lensed images according to their orientation, multiplicity and elongation. We apply the two methods to a sample of simulated Einstein rings, as they would be observed with the ESA Euclid satellite in the VIS band. The polar coordinates transform allows us to reach a completeness of 90% and a purity of 86%, as soon as the signal-to-noise integrated in the ring is higher than 30, and almost independent of the size of the Einstein ring. Finally, we show with real data that our PCA-based galaxy subtraction scheme performs better than traditional subtraction based on model fitting to the data. Our algorithm can be developed and improved further using machine learning and dictionary learning methods, which would extend the capabilities of the method to more complex and diverse galaxy shapes

    Foregrounds for observations of the cosmological 21 cm line: II. Westerbork observations of the fields around 3C196 and the North Celestial Pole

    Full text link
    In the coming years a new insight into galaxy formation and the thermal history of the Universe is expected to come from the detection of the highly redshifted cosmological 21 cm line. The cosmological 21 cm line signal is buried under Galactic and extragalactic foregrounds which are likely to be a few orders of magnitude brighter. Strategies and techniques for effective subtraction of these foreground sources require a detailed knowledge of their structure in both intensity and polarization on the relevant angular scales of 1-30 arcmin. We present results from observations conducted with the Westerbork telescope in the 140-160 MHz range with 2 arcmin resolution in two fields located at intermediate Galactic latitude, centred around the bright quasar 3C196 and the North Celestial Pole. They were observed with the purpose of characterizing the foreground properties in sky areas where actual observations of the cosmological 21 cm line could be carried out. The polarization data were analysed through the rotation measure synthesis technique. We have computed total intensity and polarization angular power spectra. Total intensity maps were carefully calibrated, reaching a high dynamic range, 150000:1 in the case of the 3C196 field. [abridged]Comment: 20 pages, 22 figures, accepted for publication in A&A. A version with full resolution figures is available at http://www.astro.rug.nl/~bernardi/NCP_3C196/bernardi.pd

    Towards gravitationally assisted negative refraction of light by vacuum

    Full text link
    Propagation of electromagnetic plane waves in some directions in gravitationally affected vacuum over limited ranges of spacetime can be such that the phase velocity vector casts a negative projection on the time-averaged Poynting vector. This conclusion suggests, inter alia, gravitationally assisted negative refraction by vacuum.Comment: 6 page

    A microlensing measurement of dark matter fractions in three lensing galaxies

    Full text link
    Direct measurements of dark matter distributions in galaxies are currently only possible through the use of gravitational lensing observations. Combinations of lens modelling and stellar velocity dispersion measurements provide the best constraints on dark matter distributions in individual galaxies, however they can be quite complex. In this paper, we use observations and simulations of gravitational microlensing to measure the smooth (dark) matter mass fraction at the position of lensed images in three lens galaxies: MG 0414+0534, SDSS J0924+0219 and Q2237+0305. The first two systems consist of early-type lens galaxies, and both display a flux ratio anomaly in their close image pair. Anomalies such as these suggest a high smooth matter percentage is likely, and indeed we prefer ~50 per cent smooth matter in MG 0414+0534, and ~80 per cent in SDSS J0924+0219 at the projected locations of the lensed images. Q2237+0305 differs somewhat in that its lensed images lie in the central kiloparsec of the barred spiral lens galaxy, where we expect stars to dominate the mass distribution. In this system, we find a smooth matter percentage that is consistent with zero.Comment: 7 pages, 4 figures. Accepted for publication in Ap

    Further Investigation of the Time Delay, Magnification Ratios, and Variability in the Gravitational Lens 0218+357

    Get PDF
    High precision VLA flux density measurements for the lensed images of 0218+357 yield a time delay of 10.1(+1.5-1.6)days (95% confidence). This is consistent with independent measurements carried out at the same epoch (Biggs et al. 1999), lending confidence in the robustness of the time delay measurement. However, since both measurements make use of the same features in the light curves, it is possible that the effects of unmodelled processes, such as scintillation or microlensing, are biasing both time delay measurements in the same way. Our time delay estimates result in confidence intervals that are somewhat larger than those of Biggs et al., probably because we adopt a more general model of the source variability, allowing for constant and variable components. When considered in relation to the lens mass model of Biggs et al., our best-fit time delay implies a Hubble constant of H_o = 71(+17-23) km/s-Mpc for Omega_o=1 and lambda_o=0 (95% confidence; filled beam). This confidence interval for H_o does not reflect systematic error, which may be substantial, due to uncertainty in the position of the lens galaxy. We also measure the flux ratio of the variable components of 0218+357, a measurement of a small region that should more closely represent the true lens magnification ratio. We find ratios of 3.2(+0.3-0.4) (95% confidence; 8 GHz) and 4.3(+0.5-0.8) (15 GHz). Unlike the reported flux ratios on scales of 0.1", these ratios are not strongly significantly different. We investigate the significance of apparent differences in the variability properties of the two images of the background active galactic nucleus. We conclude that the differences are not significant, and that time series much longer than our 100-day time series will be required to investigate propagation effects in this way.Comment: 33 pages, 9 figures. Accepted for publication in ApJ. Light curve data may be found at http://space.mit.edu/RADIO/papers.htm

    Evaluating inputs for organic farming – a new system. Proposals of the ORGANIC INPUTS EVALUATION project

    Get PDF
    This volume contains proposals for criteria for evaluation of plant protection products, fertilisers and soil conditioners1 to be used in organic agriculture. These ideas were developed in the course of the European Union (EU) Concerted Action project ‘ORGANIC INPUTS EVALUATION’ (QLK5-CT-2002-02565). For more information on this project see the end of this volume or visit the project website www.organicinputs.org. The documents in this volume are proposals elaborated by the project consortium and external experts. They were discussed with a broader audience at a public conference held in Brussels on October 13, 2005, and have been amended accordingly. Our proposals also include a “criteria matrix”, which is in Microsoft Excel format, and therefore stands as a separate file. The criteria matrix is discussed in section 5, but we strongly recommend that you consult the original document. To illustrate the use of the matrix, we have further prepared two case studies, which are also separate Excel files. All of these files are contained on the CD, and can also be downloaded from the project website. Currently, Regulation 2092/91 is under revision. We hope that our ideas can be incorporated into the regulation during this revision! In addition, we strongly encourage national institutions to make use of our proposals at the national level
    corecore