14,737 research outputs found

    Intrinsic Spin Hall Effect in the Two Dimensional Hole Gas

    Full text link
    We show that two types of spin-orbit coupling in the 2 dimensional hole gas (2DHG), with and without inversion symmetry breaking, contribute to the intrinsic spin Hall effect\cite{murakami2003,sinova2003}. Furthermore, the vertex correction due to impurity scattering vanishes in both cases, in sharp contrast to the case of usual Rashba coupling in the electron band. Recently, the spin Hall effect in a hole doped GaAsGaAs semiconductor has been observed experimentally by Wunderlich \emph{et al}\cite{wunderlich2004}. From the fact that the life time broadening is smaller than the spin splitting, and the fact impurity vertex corrections vanish in this system, we argue that the observed spin Hall effect should be in the intrinsic regime.Comment: Minor typos fixed, one reference adde

    Spatial separation of large dynamical blue shift and harmonic generation

    Get PDF
    We study the temporal and spatial dynamics of the large amplitude and frequency modulation that can be induced in an intense, few cycle laser pulse as it propagates through a rapidly ionizing gas. Our calculations include both single atom and macroscopic interactions between the non-linear medium and the laser field. We analyze the harmonic generation by such pulses and show that it is spatially separated from the ionization dynamics which produce a large dynamical blue shift of the laser pulse. This means that small changes in the initial laser focusing conditions can lead to large differences in the laser frequency modulation, even though the generated harmonic spectrum remains essentially unchanged.Comment: 4 pages, 5 figures. Under revisio

    Stochastic homogenization of the laser intensity to improve the irradiation uniformity of capsules directly driven by thousands laser beams

    Get PDF
    Illumination uniformity of a spherical capsule directly driven by laser beams has been assessed numerically. Laser facilities characterized by ND = 12, 20, 24, 32, 48 and 60 directions of irradiation with associated a single laser beam or a bundle of NB laser beams have been considered. The laser beam intensity profile is assumed super-Gaussian and the calculations take into account beam imperfections as power imbalance and pointing errors. The optimum laser intensity profile, which minimizes the root-mean-square deviation of the capsule illumination, depends on the values of the beam imperfections. Assuming that the NB beams are statistically independents is found that they provide a stochastic homogenization of the laser intensity associated to the whole bundle, reducing the errors associated to the whole bundle by the factor  , which in turn improves the illumination uniformity of the capsule. Moreover, it is found that the uniformity of the irradiation is almost the same for all facilities and only depends on the total number of laser beams Ntot = ND × NB

    Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase

    Full text link
    Phase transitions between the quantum spin Hall and the insulator phases in three dimensions are studied. We find that in inversion-asymmetric systems there appears a gapless phase between the quantum spin Hall and insulator phases in three dimensions, which is in contrast with the two-dimensional case. Existence of this gapless phase stems from a topological nature of gapless points (diabolical points) in three dimensions, but not in two dimensions.Comment: 16 pages, 5 figure

    Coupled multiferroic domain switching in the canted conical spin spiral system Mn2_{2}GeO4_{4}

    Full text link
    Despite remarkable progress in developing multifunctional materials, spin-driven ferroelectrics featuring both spontaneous magnetization and electric polarization are still rare. Among such ferromagnetic ferroelectrics are conical spin spiral magnets with a simultaneous reversal of magnetization and electric polarization that is still little understood. Such materials can feature various multiferroic domains that complicates their study. Here we study the multiferroic domains in ferromagnetic ferroelectric Mn2_{2}GeO4_{4} using neutron diffraction, and show that it features a double-Q conical magnetic structure that, apart from trivial 180 degree commensurate magnetic domains, can be described by ferromagnetic and ferroelectric domains only. We show unconventional magnetoelectric couplings such as the magnetic-field-driven reversal of ferroelectric polarization with no change of spin-helicity, and present a phenomenological theory that successfully explains the magnetoelectric coupling. Our measurements establish Mn2_{2}GeO4_{4} as a conceptually simple multiferroic in which the magnetic-field-driven flop of conical spin spirals leads to the simultaneous reversal of magnetization and electric polarization.Comment: 25+4 pages, 4+1 figures, 2+2 table

    RNA aptamers generated against oligomeric Abeta40 recognize common amyloid aptatopes with low specificity but high sensitivity.

    Get PDF
    Aptamers are useful molecular recognition tools in research, diagnostics, and therapy. Despite promising results in other fields, aptamer use has remained scarce in amyloid research, including Alzheimer's disease (AD). AD is a progressive neurodegenerative disease believed to be caused by neurotoxic amyloid beta-protein (Abeta) oligomers. Abeta oligomers therefore are an attractive target for development of diagnostic and therapeutic reagents. We used covalently-stabilized oligomers of the 40-residue form of Abeta (Abeta40) for aptamer selection. Despite gradually increasing the stringency of selection conditions, the selected aptamers did not recognize Abeta40 oligomers but reacted with fibrils of Abeta40, Abeta42, and several other amyloidogenic proteins. Aptamer reactivity with amyloid fibrils showed some degree of protein-sequence dependency. Significant fibril binding also was found for the naïve library and could not be eliminated by counter-selection using Abeta40 fibrils, suggesting that aptamer binding to amyloid fibrils was RNA-sequence-independent. Aptamer binding depended on fibrillogenesis and showed a lag phase. Interestingly, aptamers detected fibril formation with > or =15-fold higher sensitivity than thioflavin T (ThT), revealing substantial beta-sheet and fibril formation undetected by ThT. The data suggest that under physiologic conditions, aptamers for oligomeric forms of amyloidogenic proteins cannot be selected due to high, non-specific affinity of oligonucleotides for amyloid fibrils. Nevertheless, the high sensitivity, whereby aptamers detect beta-sheet formation, suggests that they can serve as superior amyloid recognition tools

    Loop models and their critical points

    Full text link
    Loop models have been widely studied in physics and mathematics, in problems ranging from polymers to topological quantum computation to Schramm-Loewner evolution. I present new loop models which have critical points described by conformal field theories. Examples include both fully-packed and dilute loop models with critical points described by the superconformal minimal models and the SU(2)_2 WZW models. The dilute loop models are generalized to include SU(2)_k models as well.Comment: 20 pages, 15 figure

    Spin-orbit coupling and Berry phase with ultracold atoms in 2D optical lattices

    Full text link
    We show how spin-orbit coupling and Berry phase can appear in two-dimensional optical lattices by coupling atoms' internal degrees of freedom to radiation. The Rashba Hamiltonian, a standard description of spin-orbit coupling for two-dimensional electrons, is obtained for the atoms under certain circumstances. We discuss the possibility of observing associated phenomena, such as the anomalous Hall and spin Hall effects, with cold atoms in optical lattices.Comment: 3 figure

    Vertex operators for quantum groups and application to integrable systems

    Full text link
    Starting with any R-matrix with spectral parameter, obeying the Yang-Baxter equation and a unitarity condition, we construct the corresponding infinite dimensional quantum group U_{R} in term of a deformed oscillators algebra A_R. The realization we present is an infinite series, very similar to a vertex operator. Then, considering the integrable hierarchy naturally associated to A_{R}, we show that U_{R} provides its integrals of motion. The construction can be applied to any infinite dimensional quantum group, e.g. Yangians or elliptic quantum groups. Taking as an example the R-matrix of Y(N), the Yangian based on gl(N), we recover by this construction the nonlinear Schrodinger equation and its Y(N) symmetry.Comment: 19 pages, no figure, Latex2e Error in theorem 3.3 and lemma 3.1 correcte
    corecore