1,080 research outputs found
Inclusive 2H(3He,t) reaction at 2 GeV
The inclusive 2H(3He,t) reaction has been studied at 2 GeV for energy
transfers up to 500 MeV and scattering angles from 0.25 up to 4 degrees. Data
are well reproduced by a model based on a coupled-channel approach for
describing the NN and N Delta systems. The effect of final state interaction is
important in the low energy part of the spectra. In the delta region, the
cross-section is very sensitive to the effects of Delta-N interaction and Delta
N - NN process. The latter has also a large influence well below the pion
threshold. The calculation underestimates the experimental cross-section
between the quasi-elastic and the delta peaks; this is possibly due to
projectile excitation or purely mesonic exchange currents.Comment: 9 pages, 9 figures, accepted for publication in EPJ
Exclusive Measurements of : the Effect Revisited
Exclusive measurements of the reactions and
have been carried out at GeV at the
CELSIUS storage ring using the WASA detector. The channel
evidences a pronounced enhancement at low invariant masses - as
anticipated from previous inclusive measurements of the ABC effect. This
enhancement is seen to be even much larger in the isoscalar
channel. The differential distributions prove this enhancement to be of
scalar-isoscalar nature. calculations give a good description of
the data, if a boundstate condition is imposed for the intermediate
system.Comment: extended version, 8 pages, 7 figures, theoretical model calculations
adde
TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs
Regulation of calcium-permeable AMPA receptors (CP-AMPARs) is crucial in normal synaptic function and neurological disease states. Although transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (γ-2) modulate the properties of calcium-impermeable AMPARs (CI-AMPARs) and promote their synaptic targeting, the TARP-specific rules governing CP-AMPAR synaptic trafficking remain unclear. We used RNA interference to manipulate AMPAR-subunit and TARP expression in γ-2–lacking stargazer cerebellar granule cells—the classic model of TARP deficiency. We found that TARP γ-7 selectively enhanced the synaptic expression of CP-AMPARs and suppressed CI-AMPARs, identifying a pivotal role of γ-7 in regulating the prevalence of CP-AMPARs. In the absence of associated TARPs, both CP-AMPARs and CI-AMPARs were able to localize to synapses and mediate transmission, although their properties were altered. Our results also establish that TARPed synaptic receptors in granule cells require both γ-2 and γ-7 and reveal an unexpected basis for the loss of AMPAR-mediated transmission in stargazer mice
An integrated transcriptomic and proteomic map of the mouse hippocampus at synaptic resolution
Understanding the brain's molecular diversity requires spatially resolved maps of transcripts and proteins across regions and compartments. Here, we performed deep spatial molecular profiling of the mouse hippocampus, combining microdissection of 3 subregions and 4 strata with fluorescence-activated synaptosome sorting, transcriptomics, and proteomics. This approach revealed thousands of locally enriched molecules spanning diverse receptor, channel, metabolic, and adhesion families. Integration of transcriptome and proteome data highlighted proteins tightly linked to or decoupled from mRNA availability, in part due to protein half-life differences. Incorporation of translatome data identified roles for protein trafficking versus local translation in establishing compartmental organization of pyramidal neurons, with distal dendrites showing increased reliance on local protein synthesis. Classification of CA1 synapses revealed contributions from kinases, cytoskeletal elements, and adhesion molecules in defining synaptic specificity. Together, this study provides a molecular atlas of the hippocampus and its synapses (syndive.org), and offers insights into spatial transcript-protein relationships
An integrated transcriptomic and proteomic map of the mouse hippocampus at synaptic resolution
Understanding the brain's molecular diversity requires spatially resolved maps of transcripts and proteins across regions and compartments. Here, we performed deep spatial molecular profiling of the mouse hippocampus, combining microdissection of 3 subregions and 4 strata with fluorescence-activated synaptosome sorting, transcriptomics, and proteomics. This approach revealed thousands of locally enriched molecules spanning diverse receptor, channel, metabolic, and adhesion families. Integration of transcriptome and proteome data highlighted proteins tightly linked to or decoupled from mRNA availability, in part due to protein half-life differences. Incorporation of translatome data identified roles for protein trafficking versus local translation in establishing compartmental organization of pyramidal neurons, with distal dendrites showing increased reliance on local protein synthesis. Classification of CA1 synapses revealed contributions from kinases, cytoskeletal elements, and adhesion molecules in defining synaptic specificity. Together, this study provides a molecular atlas of the hippocampus and its synapses (syndive.org), and offers insights into spatial transcript-protein relationships
High resistance towards herbivore-induced habitat change in a high Arctic arthropod community
Mammal herbivores may exert strong impacts on plant communities, and are often key drivers of vegetation composition and diversity. We tested whether such mammal-induced changes to a high Arctic plant community are reflected in the structure of other trophic levels. Specifically, we tested whether substantial vegetation changes following the experimental exclusion of muskoxen (Ovibos moschatus) altered the composition of the arthropod community and the predator-prey interactions therein. Overall, we found no impact of muskox exclusion on the arthropod community: the diversity and abundance of both arthropod predators (spiders) and of their prey were unaffected by muskox presence, and so was the qualitative and quantitative structure of predator-prey interactions. Hence, high Arctic arthropod communities seem highly resistant towards even large biotic changes in their habitat, which we attribute to the high connectance in the food web
Limited dietary overlap amongst resident Arctic herbivores in winter: complementary insights from complementary methods
Snow may prevent Arctic herbivores from accessing their forage in winter, forcing them to aggregate in the few patches with limited snow. In High Arctic Greenland, Arctic hare and rock ptarmigan often forage in muskox feeding craters. We therefore hypothesized that due to limited availability of forage, the dietary niches of these resident herbivores overlap considerably, and that the overlap increases as winter progresses. To test this, we analyzed fecal samples collected in early and late winter. We used molecular analysis to identify the plant taxa consumed, and stable isotope ratios of carbon and nitrogen to quantify the dietary niche breadth and dietary overlap. The plant taxa found indicated only limited dietary differentiation between the herbivores. As expected, dietary niches exhibited a strong contraction from early to late winter, especially for rock ptarmigan. This may indicate increasing reliance on particular plant resources as winter progresses. In early winter, the diet of rock ptarmigan overlapped slightly with that of muskox and Arctic hare. Contrary to our expectations, no inter-specific dietary niche overlap was observed in late winter. This overall pattern was specifically revealed by combined analysis of molecular data and stable isotope contents. Hence, despite foraging in the same areas and generally feeding on the same plant taxa, the quantitative dietary overlap between the three herbivores was limited. This may be attributable to species-specific consumption rates of plant taxa. Yet, Arctic hare and rock ptarmigan may benefit from muskox opening up the snow pack, thereby allowing them to access the plants.</p
On the interplay between hypothermia and reproduction in a high arctic ungulate
For free-ranging animals living in seasonal environments, hypometabolism (lowered metabolic rate) and hypothermia (lowered body temperature) can be effective physiological strategies to conserve energy when forage resources are low. To what extent such strategies are adopted by large mammals living under extreme conditions, as those encountered in the high Arctic, is largely unknown, especially for species where the gestation period overlaps with the period of lowest resource availability (i.e. winter). Here we investigated for the first time the level to which high arctic muskoxen (Ovibos moschatus) adopt hypothermia and tested the hypothesis that individual plasticity in the use of hypothermia depends on reproductive status. We measured core body temperature over most of the gestation period in both free-ranging muskox females in Greenland and captive female muskoxen in Alaska. We found divergent overwintering strategies according to reproductive status, where pregnant females maintained stable body temperatures during winter, while non-pregnant females exhibited a temporary decrease in their winter body temperature. These results show that muskox females use hypothermia during periods of resource scarcity, but also that the use of this strategy may be limited to non-reproducing females. Our findings suggest a trade-of between metabolically driven energy conservation during winter and sustaining foetal growth, which may also apply to other large herbivores living in highly seasonal environments elsewhere.publishedVersio
- …
