58 research outputs found
Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen
Staphyloferrin B (SB) is a citrate-based polycarboxylate siderophore produced and utilized by the human pathogen Staphylococcus aureus for acquiring iron when colonizing the vertebrate host. The first chemical synthesis of SB is reported, which enables further molecular and biological characterization and provides access to structural analogues of the siderophore. Under conditions of iron limitation, addition of synthetic SB to bacterial growth medium recovered the growth of the antibiotic resistant community isolate S. aureus USA300 JE2. Two structural analogues of SB, epiSB and SBimide, were also synthesized and employed to investigate how epimerization of the citric acid moiety or imide formation influence its function as a siderophore. Epimerization of the citric acid stereocenter perturbed the iron-binding properties and siderophore function of SB as evidenced by experimental and computational modeling studies. Although epiSB provided growth recovery to S. aureus USA300 JE2 cultured in iron-deficient medium, the effect was attenuated relative to that of SB. Moreover, SB more effectively sequestered the Fe(III) bound to human holo-transferrin, an iron source of S. aureus, than epiSB. SBimide is an imide analogous to the imide forms of other citric acid siderophores that are often observed when these molecules are isolated from natural sources. Here, SBimide is shown to be unstable, converting to native SB at physiological pH. SB is considered to be a virulence factor of S. aureus, a pathogen that poses a particular threat to public health because of the number of drug-resistant strains emerging in hospital and community settings. Iron acquisition by S. aureus is important for its ability to colonize the human host and cause disease, and new chemical insights into the structure and function of SB will inform the search for new therapeutic strategies for combating S. aureus infections.Alfred Benzon Foundation (Postdoctoral fellowship)Pacific Southwest Regional Center of ExcellenceAlfred P. Sloan Foundatio
Cell envelope proteins of Staphylococcus epidermidis grown in vivo in a peritoneal chamber implant
Staphylococcus epidermidis was grown in vivo in chambers implanted intraperitoneally in rats. The cell wall and cytoplasmic membrane protein profiles of the in vivo-grown organisms were compared with those of S. epidermidis grown in vitro in nutrient broth (NB), in iron-restricted NB, or in pooled human peritoneal dialysate (HPD). Compared with growth in broth and in common with growth in HPD, growth in vivo in chambers resulted in the repression of many S. epidermidis wall proteins, with proteins of 27, 42, 54, and 70 kDa predominating. Growth in vivo also resulted in the induction of two iron-repressible cytoplasmic membrane proteins of 32 and 36 kDa, which were also present in staphylococci grown in HPD and in iron-restricted NB. Immunoblotting experiments revealed that in sera taken 21 days after inoculation of the intraperitoneal chambers, the predominant antibody response to cell envelope proteins was directed against the 32- and 36-kDa iron-repressible membrane proteins
Effect of incubation duration, growth temperature, and abiotic surface type on cell surface properties, adhesion and pathogenicity of biofilm-detached Staphylococcus aureus cells
Scholarly publishing depends on peer reviewers
The peer-review crisis is posing a risk to the scholarly peer-reviewed journal system. Journals have to ask many potential peer reviewers to obtain a minimum acceptable number of peers accepting reviewing a manuscript. Several solutions have been suggested to overcome this shortage. From reimbursing for the job, to eliminating pre- publication reviews, one cannot predict which is more dangerous for the future of scholarly publishing. And, why not acknowledging their contribution to the final version of the article published? PubMed created two categories of contributors: authors [AU] and collaborators [IR]. Why not a third category for the peer-reviewer
Effect of hyperbaric oxygenation on the regeneration of the liver after partial hepatectomy in rats
Dietary Total Antioxidant Capacity: A Novel Indicator of Diet Quality in Healthy Young Adults
Scholarly publishing depends on peer reviewers
The peer-review crisis is posing a risk to the scholarly peer-reviewed journal system. Journals have to ask many potential peer reviewers to obtain a minimum acceptable number of peers accepting reviewing a manuscript. Several solutions have been suggested to overcome this shortage. From reimbursing for the job, to eliminating pre-publication reviews, one cannot predict which is more dangerous for the future of scholarly publishing. And, why not acknowledging their contribution to the final version of the article published? PubMed created two categories of contributors: authors [AU] and collaborators [IR]. Why not a third category for the peer-reviewer?Scopu
Staphylococci express a receptor for human transferrin: identification of a 42-kilodalton cell wall transferrin-binding protein
Staphylococcus aureus and the coagulase-negative staphylococci are commonly responsible for peritonitis in renal patients undergoing continuous ambulatory peritoneal dialysis. To simulate growth conditions in vivo, staphylococci isolated from peritoneal infections were cultured in used human peritoneal dialysate (HPD). Immunoblotting experiments using cell wall preparations from these staphylococci revealed the presence of the host iron-binding glycoprotein transferrin bound to S. aureus, S. epidermidis, S. capitis, S. haemolyticus, and S. hominis but not to S. warneri or S. saprophyticus. Similar results were obtained by incubating broth-grown staphylococci with human transferrin, although, in contrast to S. aureus, the coagulase-negative staphylococci bound more transferrin after growth in iron-restricted broth. To determine whether the staphylococci express a saturable specific receptor for human transferrin, the interaction of human 125I-transferrin with the staphylococci was examined. Both S. aureus and S. epidermidis bound the radiolabelled iron-saturated ligand in a time- and concentration-dependent manner. From competition binding assays, the affinity (Kd) and number of receptors were estimated for S. epidermidis (Kd, 0.27 microM; 4,200 receptors per cell) and S. aureus (Kd, 0.28 microM; 4,200 receptors per cell). S. epidermidis but not S. aureus receptor activity was partially iron regulated. Human apotransferrin and iron-saturated transferrin and rabbit and rat transferrins competed equally well for the staphylococcal receptor. Bovine and porcine transferrins and ovotransferrin as well as human and bovine lactoferrins were much less effective at competing with human transferrin. Treatment of whole staphylococci with protease abolished transferrin binding, indicating the involvement of cell surface protein. Western blots (immunoblots) of cell wall preparations probed with human transferrin revealed the presence of a 42-kDa transferrin-binding protein common to both S. aureus and S. epidermidis. On Western strip blots, the binding of human transferrin to this protein was blocked by labelled human transferrin but not by albumin, immunoglobulin G, or bovine transferrin or ovotransferrin. To assess the conservation of the 42-kDa transferrin-binding protein, cell wall proteins of S. epidermidis, S. haemolyticus, S. capitis, S. hominis, S. warneri, and S. saprophyticus were Western blotted and probed with human transferrin. Only S. warneri and S. saprophyticus lacked the 42-kDa wall protein, consistent with their inability to bind transferrin. These data show that the staphylococci express a specific receptor for human transferrin based at least in part on a common 42-kDa cell wall protein.</jats:p
The Staphylococcus aureus and Staphylococcus epidermidis transferrin-binding proteins are expressed in vivo during infection
- …
