3,907 research outputs found

    NMR Evidence for Antiferromagnetic Transition in the Single-Component Molecular Conductor, [Au(tmdt)_{2}] at 110 K

    Full text link
    We present the results of a ^{1}H NMR study of the single-component molecular conductor, [Au(tmdt)_{2}]. A steep increase in the NMR line width and a peak formation of the nuclear spin-lattice relaxation rate, 1/T_{1}, were observed at around 110 K. This behavior provides clear and microscopic evidences for a magnetic phase transition at considerably high temperature among organic conductors. The observed variation in 1/T_{1} with respect to temperature indicates the highly correlated nature of the metallic phase.Comment: 5pages, 6figures to be published in J. Phys. Soc. Jp

    Inclusive K+K^+ and exclusive K+YK^+Y photoproduction on the deuteron: Λ\Lambda- and Σ\Sigma-threshold phenomena

    Full text link
    Inclusive K+K^+ and exclusive K+YK^+Y photoproduction on the deuteron are investigated theoretically. Modern hyperon-nucleon forces and a recently updated kaon photoproduction operator for the γ+NK++Y\gamma +N\to K^++Y process are used. Sizable effects of the hyperon-nucleon final state interaction are found near the K+ΛNK^+\Lambda N and K+ΣNK^+\Sigma N thresholds in the inclusive reaction. Angular distributions for the exclusive process show clear YNYN final state interaction effects in certain kinematic regions. Precise data especially for the inclusive process around the K+ΣNK^+\Sigma N threshold would help to clarify the strength and property of the ΛNΣN\Lambda N-\Sigma N interaction.Comment: 14 pages, 10 figure

    Antiferromagnetic Spin Fluctuations in the Metallic Phase of Quasi-Two-Dimensional Organic Superconductors

    Get PDF
    We give a quantitative analysis of the previously published nuclear magnetic resonance (NMR) experiments in the k-(ET)2X family of organic charge transfer salts by using the phenomenological spin fluctuation model of Moriya, and Millis, Monien and Pines (M-MMP). For temperatures above T_nmr ~ 50 K, the model gives a good quantitative description of the data in the metallic phases of several k-(ET)2X materials. These materials display antiferromagnetic correlation lengths which increase with decreasing temperature and grow to several lattice constants by T_nmr. It is shown that the fact that the dimensionless Korringa ratio is much larger than unity is inconsistent with a broad class of theoretical models (such as dynamical mean-field theory) which neglects spatial correlations and/or vertex corrections. For materials close to the Mott insulating phase the nuclear spin relaxation rate, the Knight shift and the Korringa ratio all decrease significantly with decreasing temperature below T_nmr. This cannot be described by the M-MMP model and the most natural explanation is that a pseudogap, similar to that observed in the underdoped cuprate superconductors, opens up in the density of states below T_nmr. Such a pseudogap has recently been predicted to occur in the dimerised organic charge transfer salts materials by the resonating valence bond (RVB) theory. We propose specific new experiments on organic superconductors to elucidate these issues. For example, measurements to see if high magnetic fields or high pressures can be used to close the pseudogap would be extremely valuable.Comment: 11 pages, 2 figures. Accepted for publication in Phys. Rev.

    Anisotropic charge dynamics in the quantum spin-liquid candidate κ\kappa-(BEDT-TTF)2_2Cu2_2(CN)3_3

    Get PDF
    We have in detail characterized the anisotropic charge response of the dimer Mott insulator κ\kappa-(BEDT-TTF)2_2\-Cu2_2(CN)3_3 by dc conductivity, Hall effect and dielectric spectroscopy. At room temperature the Hall coefficient is positive and close to the value expected from stoichiometry; the temperature behavior follows the dc resistivity ρ(T)\rho(T). Within the planes the dc conductivity is well described by variable-range hopping in two dimensions; this model, however, fails for the out-of-plane direction. An unusually broad in-plane dielectric relaxation is detected below about 60 K; it slows down much faster than the dc conductivity following an Arrhenius law. At around 17 K we can identify a pronounced dielectric anomaly concomitantly with anomalous features in the mean relaxation time and spectral broadening. The out-of-plane relaxation, on the other hand, shows a much weaker dielectric anomaly; it closely follows the temperature behavior of the respective dc resistivity. At lower temperatures, the dielectric constant becomes smaller both within and perpendicular to the planes; also the relaxation levels off. The observed behavior bears features of relaxor-like ferroelectricity. Because heterogeneities impede its long-range development, only a weak tunneling-like dynamics persists at low temperatures. We suggest that the random potential and domain structure gradually emerge due to the coupling to the anion network.Comment: 14 pages, 13 figure

    Imperfect nesting and transport properties in unconventional density waves

    Full text link
    We consider the effect of imperfect nesting in quasi-one dimensional unconventional density waves. The phase diagram is very close to those in a conventional DW. The linear and non-linear aspects of the electric conductivity are discussed. At T=0 the frequency dependent electric conductivity develops a small dip at low frequencies. The threshold electric field depends strongly on the imperfect nesting parameter, allowing us to describe the measured threshold electric field in the low temperature phase of the quasi-two dimensional organic conductor, alpha-(BEDT-TTF)_2KHg(SCN)_4 very well.Comment: 9 pages, 9 figure

    322. Benign Herpes Simplex Virus Vector Design for Efficient Delivery of Large or Multiple Transgenes To a Diversity of Cells

    Get PDF
    Viral vectors derived from herpes simplex virus (HSV) have the potential to revolutionize gene therapy due to their ability to accommodate large and multiple therapeutic transgenes. However, current HSV gene therapy vectors express toxic levels of an immediate-early (IE) protein, ICP0, whose function is required for robust and sustained transgene expression. Here we report the development of a new generation of HSV vectors that are IE-gene independent and non-toxic, yet capable of persistent transgene expression in a variety of human primary non-neuronal cell types. We identified a CTCF motif cluster upstream of the latency promoter and a known long-term regulatory region as key elements for the protection of transgene expression cassettes from global silencing of the viral genome in the absence of all viral IE gene products. Using this new HSV vector system, we have observed vigorous expression of full-length dystrophin cDNA (14 kb) for several weeks in a dystrophin-deficient muscle cell line. We further tested our vectors for transgene expression in rodent brain. While we detected variable persistence of gene expression from the latency locus, we were surprised to observe vigorous long-term reporter gene expression from one other locus despite the absence of gene expression from this locus in non-neuronal cells. These findings demonstrate that transgene expression in neurons is operatively different from that in non-neuronal cells and suggest that multiple loci can be used for expression of foreign genes in the nervous system. In addition, our data raise the prospect that our highly defective HSV vector system will be applicable as a safe delivery tool for large and multiple therapeutic genes to a wide range of non-neuronal tissues

    Effect of Doublon-Holon Binding on Mott transition---Variational Monte Carlo Study of Two-Dimensional Bose Hubbard Models

    Full text link
    To understand the mechanism of Mott transitions in case of no magnetic influence, superfluid-insulator (Mott) transitions in the S=0 Bose Hubbard model at unit filling are studied on the square and triangular lattices, using a variational Monte Carlo method. In trial many-body wave functions, we introduce various types of attractive correlation factors between a doubly-occupied site (doublon, D) and an empty site (holon, H), which play a central role for Mott transitions, in addition to the onsite repulsive (Gutzwiller) factor. By optimizing distance-dependent parameters, we study various properties of this type of wave functions. With a hint from the Mott transition arising in a completely D-H bound state, we propose an improved picture of Mott transitions, by introducing two characteristic length scales, the D-H binding length ξdh\xi_{\rm dh} and the minimum D-D exclusion length ξdd\xi_{\rm dd}. Generally, a Mott transition occurs when ξdh\xi_{\rm dh} becomes comparable to ξdd\xi_{\rm dd}. In the conductive (superfluid) state, domains of D-H pairs overlap with each other (ξdh>ξdd\xi_{\rm dh}>\xi_{\rm dd}); thereby D and H can propagate independently as density carriers by successively exchanging the partners. In contrast, intersite repulsive Jastrow (D-D and H-H) factors have little importance for the Mott transition.Comment: 16 pages, 22 figures, submitted to J. Phys. Soc. Jp

    Multiparticle trapping problem in the half-line

    Full text link
    A variation of Rosenstock's trapping model in which NN independent random walkers are all initially placed upon a site of a one-dimensional lattice in the presence of a {\em one-sided} random distribution (with probability cc) of absorbing traps is investigated. The probability (survival probability) ΦN(t)\Phi_N(t) that no random walker is trapped by time tt for N1N \gg 1 is calculated by using the extended Rosenstock approximation. This requires the evaluation of the moments of the number SN(t)S_N(t) of distinct sites visited in a {\em given} direction up to time tt by NN independent random walkers. The Rosenstock approximation improves when NN increases, working well in the range Dtln2(1c)lnNDt\ln^2(1-c) \ll \ln N, DD being the diffusion constant. The moments of the time (lifetime) before any trapping event occurs are calculated asymptotically, too. The agreement with numerical results is excellent.Comment: 11 pages (RevTex), 6 figures (eps). To be published in Physica

    Optimizing Umkehr Ozone Profile Retrievals

    Get PDF
    NOAA Dobson Umkehr ozone profile records have been collected since the 1970s. Umkehr ozone profiles are used to monitor stratospheric ozone recovery predicted to occur by the 2050s. Current operational Dobson Umkehr profile algorithms produce data that have uncertainty on the order of ~ 5 % in the stratosphere. However, when large volcanic eruptions inject aerosols into the stratosphere, the errors can be as large as 70 %. In order to evaluate Umkehr records for aerosol-related and instrumental artifacts, we compare observations with a Hindcast simulation of the NASA Merra-2 Global Modeling Initiative (GMI) Replay (M2GMI, Orbe et al, 2017; Wargan et al, 2018) and Chemistry Transport Model (GMI CTM, Strahan et al, 2013, Strahan et al, 2016). The biases found between the models and observations are summarized for each Dobson calibration and volcanic eruption period, thus providing a reference tool for homogenization of the Umkehr time series and removal of volcanic aerosol errors
    corecore