162 research outputs found

    An Empirical Investigation of Pull Requests in Partially Distributed BizDevOps Teams

    Get PDF
    In globally distributed projects, virtual teams are often partially dispersed. One common setup occurs when several members from one company work with a large outsourcing vendor based in another country. Further, the introduction of the popular BizDevOps concept has increased the necessity to cooperate across departments and reduce the age-old disconnection between the business strategy and technical development. Establishing a good collaboration in partially distributed BizDevOps teams requires extensive collaboration and communication techniques. Nowadays, a common approach is to rely on collaboration through pull requests and frequent communication on Slack. To investigate barriers for pull requests in distributed teams, we examined an organization located in Scandinavia where cross-functional BizDevOps teams collaborated with off-site team members in India. Data were collected by conducting 14 interviews, observing 23 entire days with the team, and observing 37 meetings. We found that the pull-request approach worked very well locally but not across sites. We found barriers such as domain complexity, different agile processes (timeboxed vs. flow-based development), and employee turnover. Using an intellectual capital lens on our findings, we discuss barriers and positive and negative effects on the success of the pull-request approach

    Do national resources have to be centrally managed? Vested interests and institutional reform in Norwegian fisheries governance

    Get PDF
    Corporatism -with its privileged access, restricted participation and centralized structures - has a long history in Norwegian fisheries governance. Co-management – understood as a decentralized, bottom-up and more inclusive form of fisheries governance - has not been considered a relevant alternative.. Why does corporatism still prevail in a context where stakeholder status in fisheries governance globally – both in principle and practice - has been awarded environmental organizations, municipal authorities and even consumer advocacy groups? Why then have alternatives to the corporatist system of centralized consultation and state governance never been seriously considered in Norway, in spite of the growing emphasis on fish as a public resource and fisheries management as human intervention in geographically confined and complex ecosystems? We suggest that thismay have to do with the fundamental assumptions behind Norwegian fisheries governance that since fish is a national resource, it must be centrally managed. We argue that this is an assumption that may be contested

    Emergence of Salmonid Alphavirus Genotype 2 in Norway—Molecular Characterization of Viral Strains Circulating in Norway and Scotland

    Get PDF
    Publication history: Accepted - 29 July 2021; Published online - 6 August 2021.Pancreas disease (PD) and sleeping disease (SD), caused by an alphavirus, are endemic in European salmonid aquaculture, causing significant mortality, reduced growth and poor flesh quality. In 2010, a new variant of salmonid alphavirus emerged in Norway, marine salmonid alphavirus genotype 2 (SAV2). As this genotype is highly prevalent in Scotland, transmission through well boat traffic was hypothesized as one possible source of infection. In this study, we performed full-length genome sequencing of SAV2 sampled between 2006 and 2012 in Norway and Scotland, and present the first comprehensive full-length characterization of Norwegian marine SAV2 strains. We analyze their relationship with selected Scottish SAV2 strains and explore the genetic diversity of SAV. Our results show that all Norwegian marine SAV2 share a recent last common ancestor with marine SAV2 circulating in Scotland and a higher level of genomic diversity among the Scottish marine SAV2 strains compared to strains from Norway. These findings support the hypothesis of a single introduction of SAV2 to Norway sometime from 2006–2010, followed by horizontal spread along the coast.This research was funded by Norwegian Seafood Research Fund (FHF) grant 90079

    Enhanced transfection of cell lines from Atlantic salmon through nucoleofection and antibiotic selection

    Get PDF
    Background Cell lines from Atlantic salmon kidney have made it possible to culture and study infectious salmon anemia virus (ISAV), an aquatic orthomyxovirus affecting farmed Atlantic salmon. However, transfection of these cells using calcium phosphate precipitation or lipid-based reagents shows very low transfection efficiency. The Amaxa Nucleofector technology™ is an electroporation technique that has been shown to be efficient for gene transfer into primary cells and hard to transfect cell lines. Findings Here we demonstrate, enhanced transfection of the head kidney cell line, TO, from Atlantic salmon using nucleofection and subsequent flow cytometry. Depending on the plasmid promoter, TO cells could be transfected transiently with an efficiency ranging from 11.6% to 90.8% with good viability, using Amaxa's cell line nucleofector solution T and program T-20. A kill curve was performed to investigate the most potent antibiotic for selection of transformed cells, and we found that blasticidin and puromycin were the most efficient for selection of TO cells. Conclusions The results show that nucleofection is an efficient way of gene transfer into Atlantic salmon cells and that stably transfected cells can be selected with blasticidin or puromycin

    Denaturing Gradient Gel Electrophoresis (DGGE) as a Powerful Novel Alternative for Differentiation of Epizootic ISA Virus Variants

    Get PDF
    Infectious Salmon Anemia is a devastating disease critically affecting world-wide salmon production. Chile has been particularly stricken by this disease which in all cases has been directly related with its causative agent, a novel orthomyxovirus which presents specific and distinctive infective features. Among these, two molecular markers have been directly associated with pathogenicity in two of the eight RNA sub genomic coding units of the virus: an insertion hot spot region present in viral segment 5 and a Highly Polymorphic Region (HPR) located in viral segment 6. Here we report the successful adaptation of a PCR-dependent denaturing gel electrophoresis technique (DGGE), which enables differentiation of selected reported HPR epizootic variants detected in Chile. At the same time, the technique allows us to distinguish one nucleotide differences in sequences associated with the intriguing, and still not well-understood, insertion events which tend to occur on RNA Segment 5. Thus, the versatility of the technique opens new opportunities for improved understanding of the complex biology of all ISA variants as well as possible applications to other highly variable pathogens

    The metastasis-associated protein S100A4 exists in several charged variants suggesting the presence of posttranslational modifications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100A4 is a metastasis-associated protein which has been linked to multiple cellular events, and has been identified extracellularly, in the cytoplasm and in the nucleus of tumor cells; however, the biological implications of subcellular location are unknown. Associations between a variety of posttranslational protein modifications and altered biological functions of proteins are becoming increasingly evident. Identification and characterization of posttranslationally modified S100A4 variants could thus contribute to elucidating the mechanisms for the many cellular functions that have been reported for this protein, and might eventually lead to the identification of novel drugable targets.</p> <p>Methods</p> <p>S100A4 was immuoprecipitated from a panel of <it>in vitro </it>and <it>in vivo </it>sources using a monoclonal antibody and the samples were separated by 2D-PAGE. Gels were analyzed by western blot and silver staining, and subsequently, several of the observed spots were identified as S100A4 by the use of MALDI-TOF and MALDI-TOF/TOF.</p> <p>Results</p> <p>A characteristic pattern of spots was observed when S100A4 was separated by 2D-PAGE suggesting the presence of at least three charge variants. These charge variants were verified as S100A4 both by western immunoblotting and mass spectrometry, and almost identical patterns were observed in samples from different tissues and subcellular compartments. Interestingly, recombinant S100A4 displayed a similar pattern on 2D-PAGE, but with different quantitative distribution between the observed spots.</p> <p>Conclusion</p> <p>Endogenously expressed S100A4 were shown to exist in several charge variants, which indicates the presence of posttranslational modifications altering the net charge of the protein. The different variants were present in all subcellular compartments and tissues/cell lines examined, suggesting that the described charge variants is a universal phenomenon, and cannot explain the localization of S100A4 in different subcellular compartments. However, the identity of the specific posttranslational modification and its potential contribution to the many reported biological events induced by S100A4, are subject to further studies.</p

    Atlantic Salmon Reovirus Infection Causes a CD8 T Cell Myocarditis in Atlantic Salmon (Salmo salar L.)

    Get PDF
    Heart and skeletal inflammation (HSMI) of farmed Atlantic salmon (Salmo salar L.) is a disease characterized by a chronic myocarditis involving the epicardium and the compact and spongious part of the heart ventricle. Chronic myositis of the red skeletal muscle is also a typical finding of HSMI. Piscine reovirus (PRV) has been detected by real-time PCR from farmed and wild salmon with and without typical changes of HSMI and thus the causal relationship between presence of virus and the disease has not been fully determined [1]. In this study we show that the Atlantic salmon reovirus (ASRV), identical to PRV, can be passaged in GF-1 cells and experimental challenge of naïve Atlantic salmon with cell culture passaged reovirus results in cardiac and skeletal muscle pathology typical of HSMI with onset of pathology from 6 weeks, peaking by 9 weeks post challenge. ASRV replicates in heart tissue and the peak level of virus replication coincides with peak of heart lesions. We further demonstrate mRNA transcript assessment and in situ characterization that challenged fish develop a CD8+ T cell myocarditis

    Serine residue 115 of MAPK-activated protein kinase MK5 is crucial for its PKA-regulated nuclear export and biological function

    Get PDF
    The mitogen-activated protein kinase-activated protein kinase-5 (MK5) resides predominantly in the nucleus of resting cells, but p38MAPK, extracellular signal-regulated kinases-3 and -4 (ERK3 and ERK4), and protein kinase A (PKA) induce nucleocytoplasmic redistribution of MK5. The mechanism by which PKA causes nuclear export remains unsolved. In the study reported here we demonstrated that Ser-115 is an in vitro PKA phosphoacceptor site, and that PKA, but not p38MAPK, ERK3 or ERK4, is unable to redistribute MK5 S115A to the cytoplasm. However, the phosphomimicking MK5 S115D mutant resides in the cytoplasm in untreated cells. While p38MAPK, ERK3 and ERK4 fail to trigger nuclear export of the kinase dead T182A and K51E MK5 mutants, S115D/T182A and K51E/S115D mutants were able to enter the cytoplasm of resting cells. Finally, we demonstrated that mutations in Ser-115 affect the biological properties of MK5. Taken together, our results suggest that Ser-115 plays an essential role in PKA-regulated nuclear export of MK5, and that it also may regulate the biological functions of MK5

    Use of functional feeding strategies to protect Atlantic salmon from virally-induced inflammatory diseases- mechanistic insights revealed by transcriptomic analysis

    Get PDF
    Over the past few years one of the major concerns in the Atlantic salmon (Salmo salar) farming industry has been the increasing incidence and severity of inflammatory viral diseases. Heart and skeletal muscle inflammation (HSMI) and cardiomyopathy syndrome (CMS) are currently two of the most prevalent viral diseases in commercial Atlantic salmon farms in Norway. Mortality levels in both diseases are generally low but morbidity can be very high with the associated chronic inflammatory response lasting for several months. The consequent reduced growth performance is causing considerable financial impact as HSMI has become increasingly widespread in recent years. The impact of CMS is further exacerbated as it generally affects large fish close to harvest. HSMI lesions occur in the atrium and ventricle in the heart including inflammation and necrosis in epi- endo- and myocardium along with myositis of red skeletal muscle. CMS lesions are commonly observed in the spongy myocardium in the atrium and ventricle of the heart with severe mononuclear inflammation and necrosis. Furthermore, circulatory disturbances associated with reduced cardiac function cause multifocal liver steatosis and necrosis in both diseases. Currently there are no vaccines or any other effective treatments for these diseases and so alternative therapies that could potentially modulate the intensity of the inflammatory response could be crucial to improve the clinical manifestation of the diseases. Therefore, the overall aim of the present study was to evaluate the concept of “clinical nutrition” to improve the clinical symptoms of both viral diseases, HSMI and CMS, through the use of functional feeds formulated with reduced lipid content and increased proportions of anti-inflammatory fatty acids to moderate the apparently uncontrolled inflammatory response in the heart tissue associated with both diseases and also alleviate the secondary hepatic lesions. The experimental work consisted of three major dietary trials in Atlantic salmon in seawater. Two large trials investigated the effects of functional feeds in Atlantic salmon challenged with Atlantic salmon piscine reovirus (ASRV) and piscine myocarditis virus (PMCV), the causal agents of HSMI and CMS, respectively. In both trials, heart transcriptome, heart and liver histopathology and tissue lipid and fatty acid compositions and metabolism were determined post-infection in fish fed with the functional feeds in comparison with fish fed with a standard commercial feed formulation considered as a reference diet. All the functional feeds were formulated to have reduced digestible energy through lower dietary lipid and higher protein contents, and increased levels and proportions of anti-inflammatory long-chain polyunsaturated fatty acids (LC-PUFA), particularly eicosapentaenoic acid (EPA) compared with the reference diets. Histopathology, fatty acid composition and gene expression of heart were assessed over a long time-period of 16 weeks and 14 weeks post-challenge with ASRV and PMCV, respectively. Viral load in heart tissue, hepatic histopathology and fatty acid composition of liver and head kidney along with expression of the genes involved in the eicosanoid and LC-PUFA and eicosanoid biosynthesis pathways were also determined in the HSMI trial. The third trial was a nutritional trial evaluating the effects of dietary digestible energy content on lipid and fatty acid metabolism in salmon fed diets containing graded amounts of lipid. Fatty acid composition of liver and heart were assessed over 12 weeks, along with the hepatic expression of genes of lipid and fatty acid metabolism. The results of this research are presented in four chapters (Chapters 2-5) as four paper manuscripts. The manuscripts/Papers are either published (Chapter 2), in review (Chapter 3 and 4) or drafted for submission (Chapter 5) in appropriate peer-reviewed international journals. Chapter 2 and 3 correspond to the HSMI trial, Chapter 4 to the nutritional trial, and Chapter 5 to the CMS trial. Chapter 2 showed that viral load and histopathology scores were lower in fish fed the functional feeds, especially diet FF1, which displayed better performance. Diet strongly influenced the expression of genes related with the immune and inflammatory responses, with delayed expression in fish fed the functional feeds. Up-regulation of pro-inflammatory genes was correlated with the higher viral load observed at early-mid stages of the disease in fish fed the reference diet (ST). Expression of genes related with the immune response at 16-weeks post challenge reflected the differences in immunomodulation between the functional feeds, with fish fed diet FF1 showing lower expression. Therefore, severity of the heart lesions was correlated with the intensity of the immune response and could be associated with tissue anti-inflammatory LC-PUFA levels. Chapter 3 was focused on liver histopathology, fatty acid composition and LC-PUFA biosynthesis, along with phospholipid fatty acid composition and eicosanoid production in head kidney and heart tissue at early and late stages of ASRV infection. Liver was severely affected by the virus at the beginning of the infection in fish fed the reference ST diet, but the level of lesions were similar in all dietary groups at the end of the trial. Hepatic expression of fatty acyl desaturases was significantly depressed in fish fed the ST diet compare with fish fed the functional feeds despite the lower levels of dietary LC-PUFA in that feed. Thus endogenous production and bioavailability of anti-inflammatory LC-PUFA was potentially enhanced in fish fed the functional feeds. Changes in tissue lipid content, mobilization of fatty acids involved in inflammatory responses and changes in expression of transcription factors and genes involved in eicosanoid biosynthesis were more prominent in head kidney, confirming the important role of this organ in dietary immunomodulation after viral infection. To a lesser extent similar changes were observed in heart tissue, suggesting in situ production of eicosanoids could also be important. The unexpected effects of diet on expression of genes of LC-PUFA biosynthesis were specifically investigated in the trial described in Chapter 4. One aim of this study was to clarify whether dietary lipid content or viral infection was the cause of altered expression of desaturase genes between the different diets. Hepatic expression of other genes of lipid and fatty acid metabolism were also determined to evaluate metabolic changes associated with dietary lipid/energy level. In general, reduction of dietary energy and lipid contents while maintaining similar proportions of dietary fatty acids, led to a general up-regulation of genes involved in lipid biosynthetic pathways. Thus salmon fed lower energy diet showed increased liver expression of fatty acyl desaturases in comparison with fish fed higher energy levels. Heart transcriptomic data in Chapter 5 showed a similar delay in the inflammatory response in fish fed the functional feeds after PCMV infection as observed in the HSMI study. Modulation of inflammatory responses, similar to that previously described after ASRV infection, was also observed in fish fed the functional feeds. However, the differences in the expression of immune related genes and the level of heart lesions were not as prominent at mid-late stages of the disease as in fish fed FF1 in the HSMI trial. The present study demonstrated the beneficial effects of a clinical nutrition approach via functional feeds in two viral inflammatory diseases, HSMI and CMS, currently affecting farmed Atlantic salmon. Dietary immunomodulation increased the availability of anti-inflammatory LC-PUFA and significantly influenced the expression of the genes related with the immune/inflammatory response reducing the level and severity of cardiac and liver lesions and therefore improving the performance of fish suffering the diseases
    corecore