
An Empirical Investigation of Pull Requests in
Partially Distributed BizDevOps Teams

Viktoria Stray
University of Oslo and

SINTEF
Oslo and Trondheim, Norway

stray@ifi.uio.no

Marius Mikalsen
SINTEF and

Norwegian University of Science and Technology
Trondheim, Norway

marius.mikalsen @sintef.no

Nils Brede Moe
SINTEF Digital

SINTEF
Trondheim, Norway
nils.b.moe@sintef.no

Elin Hagen
Department of Informatics

University of Oslo
Oslo, Norway

elinhage@ifi.uio.no

Abstract—In globally distributed projects, virtual teams are
often partially dispersed. One common setup occurs when
several members from one company work with a large
outsourcing vendor based in another country. Further, the
introduction of the popular BizDevOps concept has increased
the necessity to cooperate across departments and reduce the
age-old disconnection between the business strategy and
technical development. Establishing a good collaboration in
partially distributed BizDevOps teams requires extensive
collaboration and communication techniques. Nowadays, a
common approach is to rely on collaboration through pull
requests and frequent communication on Slack. To investigate
barriers for pull requests in distributed teams, we examined an
organization located in Scandinavia where cross-functional
BizDevOps teams collaborated with off-site team members in
India. Data were collected by conducting 14 interviews,
observing 23 entire days with the team, and observing 37
meetings. We found that the pull-request approach worked very
well locally but not across sites. We found barriers such as
domain complexity, different agile processes (timeboxed vs.
flow-based development), and employee turnover. Using an
intellectual capital lens on our findings, we discuss barriers and
positive and negative effects on the success of the pull-request
approach.

Keywords—pull request, communication, coordination,
distributed global teams, Slack, agile software development,
human aspects, large scale, BizDev, case study, empirical research

I. INTRODUCTION
Offshore outsourcing (sub-contracting to third-party

vendors from other countries) is one major trend within global
software engineering (GSE). Outsourcing software
development is most often motivated by developers’ low
hourly rates in other countries [1]–[3]. The lack of knowledge
or resources is the second biggest motivational factor. In the
increasingly popular IT field, jobs are abundant but developers
who can fulfill those jobs are few. However, acquiring the
right resources can be not only challenging but costly as well.
Developing software in globally distributed teams is
challenging because of cultural differences, language barriers,
communication issues, and time differences [4]. Further, when
work is outsourced, the challenges become even bigger [5].

To mitigate the challenges with knowledge sharing and
coordination in GSE [6], [7], most companies have transferred
to agile software development and cross-functional teams.

Applying agile to a distributed setting affects how virtual
teams are structured and work together, relying much on
teamwork. In a distributed agile setting, a common strategy
for coordination across sites involves meetings using online
collaboration tools such as Slack [8]. While agile methods,
meetings, and tools reduce alignment problems between
development teams and management, alignment problems
between business, development, and operations in GSE still
exist. Therefore organizations create DevOps [9], or
BizDevOps [10], [11], teams. When software development
and IT operations are aligned, it is called DevOps [12]. Gruhn
and Schäfer [10] explain the term BizDevOps as follows:
“Business, Development and Operations work together in
software development and operations, creating a consistent
responsibility from business over development to operations.”
BizDevOps teams consist of people from various
organizational functions (e.g., enterprise architecture,
business development, software development, testing, and
operations). However, extensive cultural training is needed for
such teams to succeed [13].

Previous studies show that the main reason that companies
terminate offshore contracts is the low quality of software
being developed [5]. Extensive testing is one approach to
ensuring quality in distributed software development [14],
[15]. Another approach is using software code review [16].
Although the code review process was previously time
consuming, the practice has evolved along with the industry
and is now incremental and lightweight [17]. The formal
software inspection process has been replaced by a
mechanism called a pull request (PR), a term introduced by
GitHub [17]–[20]. While the PR mechanism is now standard
for distributed code reviews, challenges have nonetheless
been reported, and the practice has been found to both increase
and decrease the speed of the code review process [21]. Code
reviews do more than just ensure quality. Because developers
collaborate through code during a review [22], such reviews
enable knowledge sharing and aim to balance the skills in the
teams [23], which is important in distributed teams.

Even though new techniques, processes, and approaches
to GSE are likely to increase quality, Moe et al. [5] found that
the main reason for the quality problems in sourcing
relationships was not being able to build necessary human and
social capital (i.e., individual creativity and the relationships
between team members). Indicative of this are the reported

1

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

This is the author accepted version of an article published in 2021 IEEE/ACM Joint 15th International Conference on Software and
System Processes (ICSSP) and 16th ACM/IEEE International Conference on Global Software Engineering (ICGSE)

https://doi.org/10.1109/ICSSP-ICGSE52873.2021.00021

challenges with domain knowledge and high turnover, which
have only amplified the GSE problems. Even if companies
introduce new techniques and approaches such as BizDevOps
and PRs, it is unlikely they will solve all problems related to
collaborations in an outsourcing relationship. In this study, we
therefore asked the following research question:

What factors affect a PR approach in distributed agile
BizDevOps teams?

 To reach an answer, we report findings from an
interpretative case study of a large agile program, consisting
of BizDevOps teams that were partially distributed with parts
of the outsourced team located offshore. A qualitative research
method was chosen as the best way to “focus on discovering
and understanding the experiences, perspectives, and thoughts
of participants – that is, qualitative research explores meaning,
purpose or reality” [24].

The rest of this article is organized as follows. In Section
II, we provide the theoretical background, discussing PRs and
intellectual capital in GSE. Section III details our data
collection and analysis, and provides details on the
interpretative case study method. Section IV presents findings
related to the large-scale distributed context and barriers to
using PRs in the distributed setting. Section V discusses these
findings in light of the concept of intellectual capital. Section
VI provides implications of our research, and Section VII
offers conclusions and suggestions for future work.

II. BACKGROUND

To save development costs, offshoring development work
to another country is one of the key strategies companies use,
often due to the low hourly developer rates [1]. However,
outsourcing has many extra or hidden costs that can lead to it
not being a money-saving initiative as anticipated [3], [25],
[26]. Additionally, the need for resources and competence is
also a motivational factor for outsourcing work. In this
section, to understand PR in the context of GSE, we present a
background of PR research and intellectual capital.

A. Pull requests in global software development
The success of GSE greatly depends on effective

knowledge sharing within and between software development
teams [6], [7]. A lack of knowledge sharing has been reported
as one of the main challenges in GSE [27]. Further, effective
knowledge sharing helps distributed teams collaborate more
effectively {Citation}. Sharing knowledge within a team that
is globally distributed is very difficult, and therefore tools for
quality assurance (QA) of code are put in place [28]. PRs are
vital for QA in the software development workflow and have
become the standard mechanism for reviewing distributed
code [21]. A key benefit of a PR approach is that the technique
facilitates knowledge sharing, is highly collaborative, and is a
lightweight, modern QA mechanism [17]. In the PR approach,
a contributor creates a PR after making code changes, and then
a reviewer inspects the suggested changes to see whether they
can be merged into the project. The reviewer then interacts
with the contributor and others in discussion threads
associated with the PR [21]. In global software development,
trust has been found to be a key factor for accepting PRs [19].

PRs thus have the potential to support the challenge of
knowledge sharing in GSE by being a new way of reviewing
code in distributed teams. Code reviews can be viewed as
positive for mentoring and seen as opportunities to shape the

codebase [22]. Other benefits of code reviews are as follow
[23]:

1. Better code quality because knowing that someone will
review the code has a preventive effect

2. Fewer defects
3. Reviewers learn because they receive knowledge about

the changed code and how to solve problems
4. Authors learn from receiving feedback on the code they

wrote, and they learn about possible new solutions, new
libraries, and the reviewers’ values and quality norms

5. Sense of mutual responsibility and collective code
ownership

6. Better solutions
7. Complying with QA guidelines.

Although many benefits stem from code reviews, PRs may
slow down the software development process when the team
members do not actively engage with the PRs and review them
in a timely manner [21]. For example, when the developers
doing the review are overloaded with other tasks or prioritize
other things, then a PR can remain open for a long time,
slowing down the overall coding process and even causing
merge conflicts. The size of the PR also greatly affects
completion; developers prefer smaller PRs over larger ones
[29]. Other undesired effects of reviewing PRs is that it
demands more staff, the cycle time increases, and the reviewer
might offend or discourage the PR author [23]. Paul et al. [30]
recently found that males are more negative and less
encouraging when giving comments in code reviews to
females than they are to other males, and negative comments
in PRs may demotivate developers. The above points to
successful PR being dependent upon how the code review
work is organized as knowledge-intensive work. Next, we
explore intellectual capital.

B. Intellectual capital
Wohlin et al. [31] proposed a general theory of software

engineering for balancing human, social, and organizational
capital and suggested that these three components make up the
sum of the intellectual capital within an organization.
Intellectual capital is a particularly relevant perspective for
software development because software development is
knowledge-intensive work. Moe et al. [5] found that the main
reason for terminating sourcing relationships is the inability to
build the necessary human, social, and organizational capital.
Human capital is the skills and knowledge leading individuals
to provide solutions. This capital “resides with, and is utilised
by individuals” [31]. An individual’s creativity also falls
under this category. Social capital consists of knowledge
resources embedded within, available through, and derived
from a network of relationships [32]. Such relationships are
not limited to internal knowledge exchanges among team
members, but extend to linkages with customers, suppliers,
alliance partners, and similar [5]. Organizational capital can
be defined as the “possessions remaining in the organization
when people go home” [31]. This largely concerns source
code, processes, various documentation, culture, and
infrastructure. Intellectual capital is all the knowledge in a
company and consists of the three intellectual capital
components: human, social, and organizational knowledge
[31]. These three components should be balanced to
sufficiently carry out a task in a cost-efficient way in
distributed development [31]. When intellectual capital is too
low, tasks will not be implemented sufficiently, and when

2
This is the author accepted version of an article published in 2021 IEEE/ACM Joint 15th International Conference on Software and

System Processes (ICSSP) and 16th ACM/IEEE International Conference on Global Software Engineering (ICGSE)
https://doi.org/10.1109/ICSSP-ICGSE52873.2021.00021

intellectual capital in a sourcing relationship is too high, it will
probably lead to higher costs.

Finding the right level of intellectual capital depends on
the objective of the task (i.e., the intended level of
performance). A developer with little experience will
probably rely on good source code and software
documentation (organizational capital), as well as the
expertise of others (social capital), to fulfill the objective of
the task [31]. On the other hand, the same level of high
organizational capital may be redundant for an experienced
developer who has good knowledge of the code. Social capital
is also interesting to examine because it might encourage the
development of intellectual capital. For example, good
collaboration with other external units or experts may lead to
individual learning, thus increasing the human capital, which
again increases the intellectual capital.

To handle PR tasks in a global context, developers need to
follow and understand the process, collaborate with team
members, trust them, and understand the domain and
programming knowledge. In sum, developers need the right
level of intellectual capital.

III. CASE DESCRIPTION AND METHOD

A. Case study design and context
This study is an interpretative case study [33] of a large-

scale program in which we report on barriers to distributed
developments and the use of PRs. We have closely followed
the case since 2014. The case study was conducted in a large
Nordic company called NorBank (pseudonym). NorBank has
2000 employees and in-house software development units in
Sweden and Norway.

Smite and Wohlin [2] present different types of global
software engineering, concentrating on off-, on-, near-, and
far-shoring, as well as insourcing and outsourcing. The
context of the present study is offshore outsourcing, which
means work is performed in a different country (offshore) by
an external third-party collaborator (outsourcing) [26] (Figure
1).

Previously, NorBank had a long-term relationship with a
Ukrainian subcontractor, which was terminated. In 2016,
NorBank established a new relationship with a large
consultancy company in India, which we named KappaTech
(pseudonym) in this paper. Smite and Wohlin [2] described

sourcing as a form of collaboration, whereas Oshri et al. [34]
define sourcing as “the act through which work is contracted
or delegated to an external or internal entity that could be
physically located anywhere.” The two companies considered
the collaboration a partnership. At the beginning of the
sourcing relationship, all KappaTech personnel were moved
onshore for several weeks. Some stayed for months, and the
motivation was to speed up the onboarding process and create
a strong relationship between the developers in the two
companies.

TABLE I. DESCRIPTION OF ROLES IN THE BIZDEVOPS TEAMS

Role Responsibilities
Developer Included both back-end and front-end developers, with

juniors, seniors, tech lead, and domain architect.
Performed development, reviewed code, and assigned
which tasks should be developed at which site.

Test leader An administrative function that made sure the
deliveries were thoroughly tested. The test leader had
an overview of the tasks in Jira and made sure they had
the testers needed.

Business
developer

The business developers contributed to planning the
development, limited work by designing minimum
viable products, created Jira tasks, and coordinated
with business and other departments. The business
developers also conducted user testing of the product.

Product owner The product owner had overall responsibility for
reaching targets and for the teamwork. The product
owner made a development plan along with the
enterprise architect, removed obstacles, kept
stakeholders updated on the status of their projects,
their plans, and upcoming deliveries. The product
owner also acted as a buffer when requests were made
to the team and coordinated work with the other teams
in the large-scale setup.

UX designer The UX designer was administrative for all the UX
work and made sure the company had a uniform
profile.

Enterprise
architect

The enterprise architect had overall responsibility for
the solution the team was making. The person was
responsible for making sure the solution adhered to the
rest of the enterprise’s solutions and that the system the
team was building reflected the strategies of the
department. The enterprise architect also worked on
coordinating the platform with others.

Data scientist The data scientist was responsible for implementing
Google Analytics tracking, helping business
developers analyze and understand the data collected,
and helping with making decisions based on the data.

Types of sourcing arrangements and our research area, adapted from [2].

3
This is the author accepted version of an article published in 2021 IEEE/ACM Joint 15th International Conference on Software and

System Processes (ICSSP) and 16th ACM/IEEE International Conference on Global Software Engineering (ICGSE)
https://doi.org/10.1109/ICSSP-ICGSE52873.2021.00021

The teams we studied in Norbank were organized as
BizDevOps teams. In such cross-functional teams,
representatives from former business, IT, and operations work
together. Descriptions of the different roles in the BizDevops
teams in Norbank are shown in Table I. The large-scale setup
with the five teams is described in more detail in Section IV.

B. Data Collection and Analysis
Data were collected between September 2018 and April

2019. We conducted 14 interviews, observed 23 entire days
with the team, and observed 37 meetings. Additionally, we
collected various documents.

In advance of the interviews, each participant was given
the prefix N and then a random number. The document linking
the informants’ names and numbers was password protected
to ensure total anonymity. All of the interviews were recorded,
transcribed, and saved together with the randomized
participation number.

We interviewed members from two different teams: Alpha
and Kappa 1. Two representatives were from Kappa 1 located
on-site and 11 persons were from team Alpha. In addition, we
interviewed the offshore delivery coordinator who was
responsible for coordinating the activity between the Nordic
teams and the KappaTech teams. The interviews with the two
representatives from Kappa 1 were held in December 2018
and transcribed within a few days. The other interviews were
conducted over two weeks in January 2019 and transcribed
within a week of the final interview. The interviews lasted
from 26 minutes up to 1 hour, with an average of 46.7 minutes.
Table II gives an overview of the different roles of the people
interviewed.

We also observed how people located on-site were
working and we observed 37 meetings, as shown in Table III.
Another source of evidence was documentation. We collected
pictures, documents, presentations, and reports. These
included the teams’ presentations and progress plans, as well
as analysis results from surveys. The documentation was
helpful to gain a better understanding of the context.
Additionally, documentation was useful for verifying specific
details.

TABLE II. OVERVIEW OF THE INTERVIEWS

Role No. of
persons
interviewed

Team Duration in
minutes

Developer 1 Kappa 1 48
Point of contact 1 Kappa 1 53
Product Owner 1 Alpha 59
Developer 4 Alpha 42, 42, 47, & 51
Test Leader 1 Alpha 49
Business developer 2 Alpha 41 & 60
Enterprise architect 1 Alpha 51
UX-designer 1 Alpha 37
Data Scientist 1 Alpha 47
Offshore Delivery
Coordinator

1 Other 27

Total 14 Average: 46.7

TABLE III. OVERVIEW OF OBSERVED MEETINGS

Type of meeting Number of
observed
meetings

Average
number of
participants

Average
duration in
minutes

Stand-up with Alpha
and Kappa 1

6 10.5 10

Weekly stand-up 5 10.3 25
Weekly progress
meetings

4 4 52

Team workshops 2 12.5 60
Team retrospectives 2 8.5 60
Project retrospectives 2 11 105
Team-related meetings 10 N/A N/A
Project-related
meetings

6 N/A N/A

The data analysis was conducted in four main steps. First,
we started collecting the data before deciding on which theory
to use. Before the two first interviews, we had categorized the
questions in certain overall topics, such as processes and
teamwork. Every observation was documented, and for the
greater part of the observations, a reflection note was written
containing initial reflections on what was occurring. Second,
transcribed data were entered into the NVivo qualitative
analysis software. Text was coded into specific nodes, and
then nodes were categorized into the different aspects of
intellectual capital. Third, after identifying code quality as a
concern in the case, we coded for specific positive and
negative experiences with PRs. Twenty-seven codes were
generated during focused coding (e.g., “QA meetings,” “PRs
perceived as tedious,” and “Use of Slack”).

IV. FINDINGS

In this section, we first present the background and context
of the studied case, the way they were set up, and their
development process. Then, we describe the developers’
experience of reviewing PRs in this partially distributed
context.

A. Large-scale distributed context
In 2017, NorBank initiated an agile program that consisted

of four cross-functional autonomous teams organized in line
with agile principles to develop software for their business-to-
business solutions in the insurance market. The teams
consisted of resources from both the software and business
development sides of the organization. The teams delivered
software solutions (e.g., sales and settlements) to the business
side of the organization. The teams collaborated closely with
organizational units responsible for technology development
and innovation. Product managers who were part of the
program’s steering-forum and managers from the business
and technology units led each team. We named the agile
program Terra. Alpha was the team we followed closely. The
Beta, Gamma, and Delta teams were mainly observed through
meetings. Alpha and Beta were extended with teams from
KappaTech (Kappa 1 and Kappa 2; Figure 2).

Team Alpha consisted of 13 people when first starting the
study, including members with part-time positions in the team.

4
This is the author accepted version of an article published in 2021 IEEE/ACM Joint 15th International Conference on Software and

System Processes (ICSSP) and 16th ACM/IEEE International Conference on Global Software Engineering (ICGSE)
https://doi.org/10.1109/ICSSP-ICGSE52873.2021.00021

There were six developers, one test leader, two business
developers, one product owner, one UX designer, one
enterprise architect, and one data scientist. Not only was team
Alpha a part of the large-scale Terra project and cooperating
with KappaTech teams, it also had six other teams and
departments in the organization with which it coordinated and,
as such, had many dependencies the team had to manage. The
Alpha team was described as a BizDevOps team (see Table I
for the description of the different roles in this team).

The teams in KappaTech had 23 members. Although the
Norbank mostly had members dedicated to the teams,
members sometimes also shifted around depending on where
the workload pressure was high. In KappaTech, there was one
project manager, one architect, one automation developer, two
team leads, 14 developers, and four testers.

Team members from Alpha and Kappa 1 had visited each
other on several occasions, and two people from Kappa 1 had
been placed on-site site between mid-2016 and October 2018.
This had helped a great deal with the collaboration between
the sites, as illustrated by N3: “The [point of contact from
KappaTech] works well. He is a very skilled guy and has
control over a lot. He has understood much of the business
and can function as a good interpreter between NorBank and
KappaTech.”

N8, a developer, described having two members from
KappaTech on-site was also described as “a small revelation
for us.” N11 (the test leader) said, “Problems were solved
much quicker.” However, this setup also made much of the
communication go through the two persons from KappaTech
because it was easier.

Alpha was responsible for managing the progress plan and
decided which development tasks should be developed at
which site. Alpha team members also wrote the product
specifications for the tasks. They usually did not collaborate
on tasks across sites.

Several tools were used to coordinate the development
tasks. By using Jira, all team members, developers in
particular, had the possibility of keeping track of who was
solving which tasks. Most interviewees stated that they had a
good overview of what other people were doing, though not
necessarily always in detail.

Slack was another tool that gave a good overview of what
was occurring. Slack was used for most of the communication
and it was important for their agile process. They also used
Slack for many of the daily stand-up meetings. N8 said, “It
works much better with a small stand-up in Slack so people

know what you are doing. There is no point in standing in a
circle and wasting time.” N10 described both positive and
negative sides of using Slack:

The flow of information on Slack, I am very happy with
that. The amount of emails has drastically gone down,
thank goodness. I used to spend an awful lot of time on e-
mails. The only negative with the use of Slack is that it is
hard to keep the work-life balance and quit working; you
are on work all the time. It is probably the toughest
challenge with that type of communication, but I think both
the tone we have on Slack and team-wise it is very good!

B. Pull requests in agile distributed teams
The developers in team Alpha reviewed each other’s PRs.

In addition, three of the on-site developers reviewed the PRs
sent from Kappa 1. To reduce rework and increase the PRs’
probability of being accepted, Kappa 1 did an internal code
review before submitting its PR. While this process, in theory,
should work fine, we found several frustrated team members.
We identified four repeating topics when interviewing them
about the PR process, which we will describe next.

1) Domain complexity
Because of European bank regulations and policies, the

project was set up in such a way that the on-site developers
were responsible for the quality of all the code developed. In
practice, it meant an on-site developer had to approve all code
developed off-site. Alpha team members rejected many of the
PRs. When compared to the other teams working on Terra, we
found the rejection number to be much higher in Alpha
regarding PRs from KappaTech than it was for the other on-
site teams, even though they worked with the same pool of
developers. Even though we did not investigate the exact
reason for the rejection of PRs, in a meeting, the person
responsible for the collaboration between the sites commented
that the domain was much more complicated for the Alpha
team than it was for the Beta, Gamma, and Delta teams.

The domain becoming a challenge was surprising because
KappaTech had experience from similar projects in the same
domain. When interviewing a developer from Kappa 1 (N4)
located on-site about the role of domain knowledge, he
explained that “it’s not just about the business model, it’s
about the insurance policy. The way insurance works here is
not a bit different—it’s a lot different than in [the homeland]
and other countries we have worked on.” Because the on-site
KappaTech developer worked closely with the on-site team
and spent 60% of his time coding, he acquired more
experienced over time regarding the domain. However, it

Fig. 2. Large-scale project structure

Figure 4.1: Project structure

ing autonomous teams. One of the teams, called team Alpha, was studied
in depth, while the other teams have been observed through representa-
tives at inter-team meetings. The rest of the teams will not be presented in
depth, but they are called team Beta, Gamma and Delta. See figure 4.1.

Kappa

Some of the development is outsourced to Kappa, a corporation that pro-
vides IT-services, located in another country. The decision to outsource de-
velopment was made at an organisational level approximately three years
ago, and the two companies are partners in this collaboration. At the off-
site location, there is a separate room dedicated for the teams working for
the Norwegian company. Although they have mostly dedicated members to
each Norwegian team, members sometimes also shift around depending on
where the workload pressure is high. This is represented in Figure 4.1 by
the lines connecting the off-site Kappa teams. Team members from Alpha
and Kappa had on several occasions visited each other, and there were two
people from Kappa placed at the Norwegian site since mid 2016 and Octo-
ber 2018.

A document from June 2018 gives a resource overview for project Terra
at the offshore site. At the start of the project in August 2016, 29 people
had started. 13 of them had left the project within two years. Additionally,
eight had started, where one of them had left again. This leaves an em-
ployee turnover rate for this time period at ⇡ 38 percent. Figure 4.2 gives
an overview of the 23 resources at the off-site location. While most of them
are not characterised as junior or senior developers, I was told that there
are many junior developers off-site.

32

Large-scale
development project

Teams on-site

Teams off-site

5

~

This is the author accepted version of an article published in 2021 IEEE/ACM Joint 15th International Conference on Software and
System Processes (ICSSP) and 16th ACM/IEEE International Conference on Global Software Engineering (ICGSE)

https://doi.org/10.1109/ICSSP-ICGSE52873.2021.00021

became evident that the off-site developers improved slowly.
N14 continued: “We need to figure out more ways to
communicate this kind of business knowledge … so everything
gets notified and gets broadcasted to everybody that is in the
team so that it’s just not depending on one person.”

2) Agile methodology and work habits
Both teams used agile methods, and they had the freedom

to choose their processes, practices, and tools. Alpha, the on-
site team, used Kanban, which is a flow-based approach. To
reduce interruptions, team Alpha tried to hold meetings only
on Tuesdays and Thursdays to enable them to concentrate for
full days the rest of the week. Consequently, some of the
stand-up meetings were conducted on Slack. Team Kappa 1
followed Scrum, which is a timeboxed approach, and the team
worked in two-week sprints. One reason was to have more
control, as described by N1:

 With KappaTech, we need more control and to be more
rigid, so there we run three-week cycles (week zero, one
and two). That is, we have two-week sprints with
preparations before, and also demos and retrospectives.
So, with them we have a quite well-defined set of
ceremonies that we run.

 Using Scrum was seen as beneficial for KappaTech because
shielded the Nordic developers from having to review PRs
daily but instead do it more intensely over one week. While
reviewing others’ code was a key activity, it was not seen as
the most exciting work to do, independent of the code being
written on-site or off-site.

Because of KappaTech’s decision to follow Scrum, after
each sprint, a large number of PRs was sent to Alpha for
review. It was a bit overwhelming for the Alpha developers
receiving the PRs, as illustrated by N3, a developer:

When I get QA from KappaTech, then it is maybe 64 [pull
requests], so then it’s like, ‘Wow! Where should I begin?’
That is cumbersome, not very motivating. Reviewing pull
requests is never particularly fun regardless of who sent
them, and now it has been quite a lot. Then it gets really
boring.

Further, participants said the off-site PRs were more extensive
(because they had been coding for weeks) than the on-site
PRs, which made the work even more demotivating because
an extensive PR takes more time and energy to approve as it
becomes more complicated.

The amount of PR work stayed high over the whole period
and did not change much. Multiple on-site team members
were worried that some of the senior developers might quit
because of this tedious task. N1 explained: “I’m scared that
some of these, like [name of developer], who is an incredibly
competent and experienced developer and been here for a
very long time, will quit because he can’t take it anymore.” N1
also said that the part of his job that made him most unhappy
and frustrated was when he had to review PRs from Kappa 1.
While the seniors were unhappy, one on-site junior developer
explained that he learned while reviewing code, so he did not
mind doing it.

3) Social networks
Reviewing PRs was seen as boring work. While large PRs

and many PRs arriving at the same time seemed to reduce job
motivation, an additional factor seemed to influence
motivation positively; that is, knowing the person who had

written the code. In addition, reviewing PRs for the on-site
developers was more satisfying because they could sit
together. N3 explained: “If we do QA locally, then we do it
together with the developer, who is also someone I know. So,
I think it's easier and then you can talk back and forth, so I
think it's much better”. N12 elaborated on why he found it
easier to do pull requests from people he knew: “[Name of
developer] and I have worked here for a long time and we
know each other, we trust each other. I know that most of what
he does is of high quality.”

Not all Alpha and Kappa 1 team members had met
physically, and consequently not everyone knew each other.
Alpha members stated multiple times that they were unsure
about the knowledge of each of the Kappa 1 members. N1
said, “We don’t really know their competence properly.”
Further, KappaTech sometimes added new people to the
Kappa teams and a high attrition rate (turnover) increased the
problem of working together on PRs. Based on a resource
overview from KappaTech, we analyzed the attrition
numbers. Of the 29 people at KappaTech that joined Terra in
August 2016, after 2 years, 16 people had left and 12 had join.
The annual turnover rates were calculated to be the following:

• 2016: 4%

• 2017: 18%

• 2018: 38%

We were told that most of the new people were junior
developers. N8 explained the effect of having many new
people on the project:

I feel there are too often new names appearing in the pull
requests, names I have never seen before…. When you
know the person, you know his strengths and weaknesses,
and then it becomes much easier to press ‘approve’
because I know what he knows. Now, it’s more like I have
to analyze the code much more carefully, because I do not
know who wrote it and how good an understanding that
person has of our complex domain.

N13 described in detail how the communication on Slack
let everyone know what was occurring in the distributed
project. Because the communication was more informal than
the communication via e-mail was, the threshold for
communicating was lowered across sites, and team members
could quickly clarify PRs. Further, the structure at KappaTech
was described as more hierarchical and traditional than at
Norbank, thus making it harder to rely on informal and
frequent communication, but the use of Slack helped the
situation. N5 said, “People are not afraid to write both small
and big things on Slack.”

Although they were using Slack for clarifications, they
needed to change the collaboration process to improve the
situation. Therefore, they introduced additional quality
meetings where they looked at the PRs. N15 from Kappa 1
explained how he was pleased that these meetings were
introduced because they made the collaboration more
effective:

 If someone sits and tries to think of why we did something,
[then] that takes a lot of time. So it’s better that we show
them this is why we did what we did, and explain the
thought process behind the code.

6

~

This is the author accepted version of an article published in 2021 IEEE/ACM Joint 15th International Conference on Software and
System Processes (ICSSP) and 16th ACM/IEEE International Conference on Global Software Engineering (ICGSE)

https://doi.org/10.1109/ICSSP-ICGSE52873.2021.00021

4) Measuring productivity
The KappaTech team was frequently measured by key

performance indicators (KPIs) set by NorBank. The KPIs
were measurements from numbers they received from
queries in Jira. The queries retrieved information such as
how long a task spent at a certain stage in the development
process and how many tasks team Alpha rejected and sent
back to KappaTech. Although many PRs were rejected and
the quality was not seen as satisfactory, nevertheless the
KPIs on the code and productivity were met. Moreover, as
long as the KPIs were met, managers at KappaTech and
Norbank were happy. When investigating why the KPIs on
the PRs were shown as good despite the quality issues, we
found two explanations. The KPIs did not measure the
acceptance rate on GitHub, but rather the acceptance rate in
Jira. Further, a PR could have many Jira tasks connected to
it, meaning that when a PR was finally accepted, many Jira
tasks were then also accepted. Moreover, when a Jira task
was split into many sub-tasks and they were all approved, it
looked as though much work had been done and that the
quality was good. Consequently, the acceptance rate KPI
was good. N8 explained:

The KappaTech teams are measured by the number of pull
requests that are approved or not, but for some reason
that measurement is calculated by completed Jira tasks
and not actual PRs in the system where we approve the
code. Often, I feel that one pull request has 10 attached
Jira issues, to double the KPI. I think measuring an
outsourcing partnership based on the number of approved
PRs is not a good solution.

V. DISCUSSION
Typical reasons companies terminate offshore contracts

are the low quality of the software being developed and a
knowledge gap between off-site and on-site workers [5].
Relying on PRs has been found to mitigate such barriers
because the approach results in better code quality and
facilitates knowledge sharing between team members [23].
However, PRs may also slow down the software
development process when the requests are not reviewed

promptly [21]. We studied the PR approach in an offshore
outsourcing relationship using interviews and observations.
We will next discuss the factors that affect the PR approach in
distributed agile BizDevOps teams. We investigated the
positive and negative factors that affected the PR approach
and the ways they relate to the three components of
intellectual capital [31], as shown in Figure 3.

A. Factors that negatively affected the pull request approach
The developers categorized performing QA, or code

review, as one of the most boring tasks they had to do. We
found that only a subset of the on-site team members acted as
reviewers, making the number of tedious tasks high. Some
people even threatened to quit if they had to spend too much
time reviewing PRs. Even though the idea of two-week sprints
and fewer interruptions was good on paper, it made the
situation worse in practice. After each sprint, the developers
received a very high number of PRs, and some were very
large, which made the job more demanding and even less
motivating. Periods with too many and too large PRs resulted
in demotivated and frustrated developers. Our findings
support other research that has shown developers prefer
smaller PRs over larger ones [29], [35]. Another explanation
for the on-site developers being dissatisfied is that team

members who receive others’ task outputs are less satisfied
[36].

The challenge caused by relying on two types of agile
processes between distributed teams can be seen as a problem
with the organizational capital [31]. While partially
incompatible processes cause problems, the major challenge
seemed to stem from the lack of human capital. The offshore
developers lacked domain knowledge, which led to many PRs
from the off-site developers being rejected. In another
NorBank team, the rejection number was lower even though
the PRs partly came from the same pool of developers,
indicating that Alpha gave Kappa 1 team complex tasks. Our
finding is in line with Wohlin et al. [31], who found that
assigning simple and non-critical tasks and more minor
product improvements when remote offshore developers
climb the learning curve is essential. Similarly, Moe et al. [5]
studied four outsourcing attempts and found high turnover and
lack of domain knowledge affected the level of human capital
in all cases.

The situation became worse because of the high attrition
rate and people not knowing each other. Our findings are in
accordance with Smite and van Solingen [26], who found high
attrition increases the length of a remote team’s learning
curve. Not knowing each other resulted in developers not

Fig 3. The factors that affected the pull request approach

Human capital

Social capital

Pull-request approach

Different agile
methodologies

Not knowing each
other

How the outsourced
team is measured
by KPIs

Lack of trust

Slack

Slack

Jira

Positively affects Negatively affects

Organizational capital

Quality meetings

Slack

Peer reviewing
together

Co-location

Lack of domain
knowledge
Long feedback loop

High attrition

Complex domain

Different agile
methodologies

7

~

This is the author accepted version of an article published in 2021 IEEE/ACM Joint 15th International Conference on Software and
System Processes (ICSSP) and 16th ACM/IEEE International Conference on Global Software Engineering (ICGSE)

https://doi.org/10.1109/ICSSP-ICGSE52873.2021.00021

trusting the code submitted for review, as also found in [19],
[37]. The low trust resulted in the Alpha members being very
thorough when reviewing PRs from Kappa 1 because they did
not know what human capital the Kappa 1 members
possessed.

Social capital has been found to play an important role in
PR processes. Social capital is the team members’ network,
and the organization supports the creation of social capital
when it brings its members together to do their primary tasks
and coordinate work, particularly in the context requiring
mutual adjustment [31]. In open source projects, strong social
connections increase the chances that a PR is accepted, and a
weak connection reduces the chance of a PR being accepted
[35]. Similarly, our case shows that a weak social network and
weak social capital negatively affected the PR approach.

B. Factors that positively affected the pull request approach
While most developers perceived the work of doing PRs

as a less motivating part of the job and something they did not
want to do, they continually improved the practice. We found
several factors that made the practice work better and become
less tedious.

The on-site Alpha team members often worked in pairs
when doing QA and development tasks. However, they did
not pair up with the off-site developers, partly because of the
time zone differences. Pairing with Kappa 1 might have
enhanced their human capital, thus making Kappa 1 perform
better later. Although they did not pair up across sites, they
introduced joint quality meetings where they discussed the
PRs. Another positive practice was that they had two people
from KappaTech co-located on-site, which increased the on-
site KappaTech employees’ social capital and was found
beneficial for the work. Our findings are in accordance with
Smite et al. [38], who indicate that social capital and
networking are essential when solving complex, unfamiliar, or
interdependent tasks.

Coordination tools were also a positive factor for the PR
practice. Slack has been found to support problem solving and
knowledge sharing in distributed teams [8]. Our findings show
that Slack supported the PR approach because developers
discussed and shared knowledge (human capital) in the tool.
However, a common challenge is that the knowledge
documented in Slack logs, which is a form of organizational
capital, [31] can be difficult to retrieve at a later time because
of a high number of tools used (e.g., Slack, Jira, and GitHub),
and developers might not remember where they discussed an
issue [39]. Further, when new people join, the information
stored in Slack might be hard to find.

C. Implications for practice
Our study generates several findings with practical

implications. First, there is a need to focus on creating good
agile teams across locations. Software development and
handling PRs is teamwork that requires much communication
and knowledge sharing. Thus, to ensure high quality and a
good PR process, focusing on working as one team seems
reasonable. While offshore outsourcing has a buyer–vendor
aspect, autonomy and agility need to be in focus, thus ensuring
more efficient collaboration.

Second, being attentive to employee attrition levels is
important. High employee turnover is likely to happen in a
sourcing relationship, and easy routine tasks are demotivating
for the on-site personnel and may increase the attrition rate on-

site. Establishing the right processes to maintain intellectual
capital and balance the workload may help deal with high
turnover. When a person leaves the team, his or her human
capital should be preserved in new human capital, social
capital, or organizational capital. Regulating turnover in the
contract can also be a solution for dealing with this. In a study
from 2016, Smite and Van Solingen [26] attempted to
calculate offshore-outsourcing costs between a Dutch
software company and an Indian vendor. They found that
learning costs due to offshore employee turnover were the
primary cost factor to control. In rapid-growth markets, high
turnover rates are not unusual [5], [26]. Balancing the
workload is key. If there is a need for the on-site team to
handle all the PRs, then there cannot be too many remote
developers. The correct ratio depends on the skills of the off-
site developers (human capital), the network of the developer
(social capital), and the development process in use
(organizational capital). The importance of the intellectual
capital components depends on the specific task. Therefore, a
junior developer who has low human capital and lacks a
network (social capital) will need to strengthen his or her
social capital by building the network, simultaneously having
adequate organizational capital as support. Human capital
strengthens over time (e.g., by working with project tasks).

Third, PRs must not be too large. Our findings indicate that
the amount of reviewing and rework resulted in a higher cost
to the sourcing relationship and lowered work satisfaction on-
site. Therefore, we suggest that companies aim to have their
project members submit small PRs and follow technical
contribution norms, thereby increasing the likelihood of the
PR being accepted [35].

Finally, there is no off-the-shelf solution for making
collaboration successful in an outsourcing setup; we found
repeated issues pertaining to quality and motivational
problems and indications of increased costs. Our findings
align with Smite et al. [1], who argued that outsourcing
complex projects that require significant expertise and are
domain specific often does not save money. The cost of losing
on-site personnel is also high. Hence, the decision to outsource
should not be cost-motivated.

D. Limitations
According to Yin [40], interviews are one of the most

important sources of case study information, and they should
be considered “guided conversations rather than structured
queries” [40]. The strength of holding interviews is that they
are targeted, which means they are focused directly on case
study topics. Interviews are also insightful and provide
perceived causal inferences and explanations [40]. However,
being aware of the weaknesses of interviews as evidence is
vital. They are likely to be biased, both when it comes to
poorly defined questions and responses. If an informant does
not recall correctly, then his or her answers are inaccurate, and
they can be reflexive in the way that the informant says what
the interviewer wants to hear [40]. Formulating neutral, non-
leading questions is essential. These were all things we were
aware of when conducting and later analyzing the interviews.

VI. CONCLUSION AND FUTURE WORK

Developing software in teams distributed over continents
is challenging, but agile software development and
BizDevOps teams reduce the challenges of globally
distributed teams. Although such approaches mitigate some of
the challenges, the main reason companies terminate offshore

8

~

This is the author accepted version of an article published in 2021 IEEE/ACM Joint 15th International Conference on Software and
System Processes (ICSSP) and 16th ACM/IEEE International Conference on Global Software Engineering (ICGSE)

https://doi.org/10.1109/ICSSP-ICGSE52873.2021.00021

contracts is the low quality of the software produced.
Therefore, finding ways to improve quality is key to GSE.
Currently, the use of PRs is a preferred way of reviewing code,
mainly to improve the quality of the code and enable
continuous deliveries.

We conducted an interpretative case study to investigate
factors that affect the PR approach in distributed agile
BizDevOps teams. We report on the friction caused by using
PRs for distributed development as part of an offshore
outsourcing relationship between two sites. We found
multiple barriers to the code review process. Examples
include off-site developers struggling with domain
complexity, the use of two agile approaches (a flow-based
Kanban approach and a timeboxed Scrum approach) in the
distributed team leading to an overload of PRs in periods, and
a lack of social networks between developers across sites
(mainly because of high turnover off-site).

The developers studied on-site were frustrated by the
tedious task of reviewing PRs from the offshore site. Future
work should investigate ways to set up a successful PR
approach that do not negatively affect the developers’
motivation. Our findings showed the companies’ KPIs did not
measure the success of the distributed teamwork and the
quality of the code produced. Governing and measuring in
global software development is known to be difficult and
research is lacking [41]. Our findings confirm previous
research that showed the number of PRs might not be a good
measurement for developer productivity [22].

ACKNOWLEDGMENTS
We are grateful to all the participants in the case study. The
work was supported by the A-team project and the Research
council of Norway through grant 267704.

REFERENCES
 [1] D. Šmite, R. Britto, and R. Van Solingen, “Calculating the extra costs

and the bottom-line hourly cost of offshoring,” in 2017 IEEE 12th
international conference on Global Software Engineering (ICGSE),
2017, pp. 96–105.

[2] D. Šmite and C. Wohlin, “A Whisper of Evidence in Global Software
Engineering,” IEEE Software, vol. 28, no. 4, pp. 15–18, Aug. 2011.

[3] D. Smite, N. B. Moe, T. Krekling, and V. Stray, “Offshore outsourcing
costs: known or still hidden?,” in Proceedings of the 2019 ACM/IEEE
14th International Conference on Global Software Engineering
(ICGSE), 2019, pp. 40–47.

[4] N. B. Moe, D. S. Cruzes, T. Dyba, and E. Engebretsen, “Coaching a
Global Agile Virtual Team,” in Proceedings of the Global Software
Engineering (ICGSE), 2015 IEEE 10th International Conference on,
2015, pp. 33–37, doi: 10.1109/ICGSE.2015.26.

[5] N. B. Moe, D. Šmite, G. K. Hanssen, and H. Barney, “From offshore
outsourcing to insourcing and partnerships: four failed outsourcing
attempts,” Empirical Software Engineering, vol. 19, no. 5, pp. 1225–
1258, 2014.

[6] J. Kotlarsky and I. Oshri, “Social ties, knowledge sharing and
successful collaboration in globally distributed system development
projects,” European Journal of Information Systems, vol. 14, no. 1, pp.
37–48, 2005.

[7] M. Zahedi, M. Shahin, and M. A. Babar, “A systematic review of
knowledge sharing challenges and practices in global software
development,” International Journal of Information Management, vol.
36, no. 6, pp. 995–1019, 2016.

[8] V. Stray and N. B. Moe, “Understanding coordination in global
software engineering: A mixed-methods study on the use of meetings
and Slack,” Journal of Systems and Software, vol. 170, p. 110717,
2020, doi: https://doi.org/10.1016/j.jss.2020.110717.

[9] V. Stray, N. B. Moe, and A. Aasheim, “Dependency Management in
Large-Scale Agile: A Case Study of DevOps Teams,” in Proceedings

of the 52nd Hawaii International Conference on System Sciences,
2019, pp. 7007–7016, doi: http://hdl.handle.net/10125/60137.

[10] V. Gruhn and C. Schäfer, “BizDevOps: because DevOps is not the end
of the story,” in International conference on intelligent software
methodologies, tools, and techniques, 2015, pp. 388–398.

[11] N. B. Moe, V. Stray, and R. Hoda, “Trends and updated research
agenda for autonomous agile teams: a summary of the second
international workshop at XP2019,” presented at the International
Conference on Agile Software Development, 2019, pp. 13–19.

[12] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol 123,
pp.176-189, 2015, doi: http://dx.doi.org/10.1016/j.jss.2015.06.063.

[13] D. Šmite, J. Gonzalez-Huerta, and N. B. Moe, “‘When in Rome, Do as
the Romans Do’: Cultural Barriers to Being Agile in Distributed
Teams,” in Proceedings of the International Conference on Agile
Software Development, 2020, pp. 145–161.

[14] R. Florea and V. Stray, “A global view on the hard skills and testing
tools in software testing,” in Proceedings of the the 14th International
Conference on Global Software Engineering (ICGSE), 2019, pp. 133–
141.

[15] R. Florea and V. Stray, “The skills that employers look for in software
testers,” Software Quality Journal, vol. 27, no. 4, pp. 1449–1479, Dec.
2019, doi: 10.1007/s11219-019-09462-5.

[16] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in GitHub: What can we learn from code review and bug
assignment?,” Information and Software Technology, vol. 74, pp. 204–
218, 2016.

[17] P. C. Rigby, A. Bacchelli, G. Gousios, and M. Mukadam, “A Mixed
Methods Approach to Mining Code Review Data: Examples and a
study of multicommit reviews and pull requests,” in The Art and
Science of Analyzing Software Data, Elsevier, 2015, pp. 231–255.

[18] V. Lenarduzzi, V. Nikkola, N. Saarimäki, and D. Taibi, “Does code
quality affect pull request acceptance? An empirical study,” Journal of
Systems and Software, vol. 171, p. 110806, 2020, doi:
10.1016/j.jss.2020.110806.

[19] F. Calefato, F. Lanubile, and N. Novielli, “A preliminary analysis on
the effects of propensity to trust in distributed software development,”
in Proceedings of the 2017 IEEE 12th international conference on
global software engineering (ICGSE), 2017, pp. 56–60.

[20] M. M. Rahman and C. K. Roy, “An insight into the pull requests of
github,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, 2014, pp. 364–367.

[21] C. Maddila, S. S. Upadrasta, C. Bansal, N. Nagappan, G. Gousios, and
A. van Deursen, “Nudge: Accelerating Overdue Pull Requests Towards
Completion,” arXiv preprint arXiv:2011.12468, 2020.

[22] N. Forsgren, M.-A. Storey, C. Maddila, T. Zimmermann, B. Houck,
and J. Butler, “The SPACE of Developer Productivity: There’s more to
it than you think.,” Queue, vol. 19, no. 1, pp. 20–48, 2021.

[23] T. Baum, O. Liskin, K. Niklas, and K. Schneider, “Factors influencing
code review processes in industry,” in Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, November 2016, pp. 85–96, doi:
https://doi.org/10.1145/2950290.2950323.

[24] M. Harwell, “Research design in qualitative/quantitative/mixed
methods,” in The SAGE Handbook for Research in Education:
Pursuing Ideas as the Keystone of Exemplary Inquiry, 2nd ed.,
Thousand Oaks, California: SAGE Publications, Inc., 2011.

[25] D. Šmite, F. Calefato, and C. Wohlin, “Cost savings in global software
engineering: Where’s the evidence,” IEEE Software, vol. 32, no. 4, pp.
26–32, 2015.

[26] D. Smite and R. van Solingen, “What’s the true hourly cost of
offshoring?,” IEEE Software, vol. 33, no. 5, pp. 60–70, 2015.

[27] M. Niazi et al., “Challenges of project management in global software
development: A client-vendor analysis,” Information and Software
Technology, vol. 80, pp. 1–19, 2016.

[28] F. Salger, S. Sauer, G. Engels, and A. Baumann, “Knowledge Transfer
in Global Software Development - Leveraging Ontologies, Tools and
Assessments,” in 2010 International Conference on Global Software
Engineering, 2010, pp. 336–341, doi: 10.1109/icgse.2010.46.

[29] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for
it: Determinants of Pull Request Evaluation Latency on GitHub,” 2015
IEEE/ACM 12th Working Conference on Mining Software
Repositories, pp. 367–371, 2015, doi: 10.1109/msr.2015.42.

9

~

This is the author accepted version of an article published in 2021 IEEE/ACM Joint 15th International Conference on Software and
System Processes (ICSSP) and 16th ACM/IEEE International Conference on Global Software Engineering (ICGSE)

https://doi.org/10.1109/ICSSP-ICGSE52873.2021.00021

[30] R. Paul, A. Bosu, and K. Z. Sultana, “Expressions of Sentiments during
Code Reviews: Male vs. Female,” in 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019, pp. 26–37, doi: 10.1109/SANER.2019.8667987.

[31] C. Wohlin, D. Šmite, and N. B. Moe, “A general theory of software
engineering: Balancing human, social and organizational capitals,”
Journal of Systems and Software, vol. 109, pp. 229–242, 2015, doi:
http://dx.doi.org/10.1016/j.jss.2015.08.009.

[32] M. A. Youndt, M. Subramaniam, and S. A. Snell, “Intellectual capital
profiles: An examination of investments and returns,” Journal of
Management Studies, vol. 41, no. 2, pp. 335–361, 2004.

[33] G. Walsham, “Doing interpretive research,” European Journal of
Information Systems, vol. 15, no. 3, pp. 320–330, Jun. 2006.

[34] Ilan Oshri, Julia Kotlarsky, and Leslie P. Willcocks, The Handbook of
Global Outsourcing and Offshoring, 2nd ed. Palgrave, 2011.

[35] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in GitHub,” presented at the
Proceedings of the 36th international conference on Software
engineering, 2014, pp. 356–366.

[36] M. Berntzen and S. I. Wong, “Autonomous but Interdependent: The
Roles of Initiated and Received Task Interdependence in Distributed
Team Coordination,” International Journal of Electronic Commerce,
vol. 25, no. 1, pp. 7–28, 2021.

[37] N. Ducheneaut, “Socialization in an open source software community:
A socio-technical analysis,” Computer Supported Cooperative Work
(CSCW), vol. 14, no. 4, pp. 323–368, 2005.

[38] D. Šmite, N. B. Moe, A. Šāblis, and C. Wohlin, “Software teams and
their knowledge networks in large-scale software development,”
Information and Software Technology, vol. 86, pp. 71–86, 2017.

[39] G. Borrego, A. L. Morán, R. R. Palacio, A. Vizcaíno, and F. O. García,
“Towards a reduction in architectural knowledge vaporization during
agile global software development,” Information and Software
Technology, vol. 112, pp. 68–82, 2019.

[40] R. K. Yin, Case study research and Applications: Design and Methods,
6th ed. Thousand Oaks, Calif.: SAGE publications, 2018.

[41] A. Manjavacas, A. Vizcaíno, F. Ruiz, and M. Piattini, “Global software
development governance: Challenges and solutions,” Journal of
Software: Evolution and Process, p. e2266, 2020.

10
This is the author accepted version of an article published in 2021 IEEE/ACM Joint 15th International Conference on Software and

System Processes (ICSSP) and 16th ACM/IEEE International Conference on Global Software Engineering (ICGSE)
https://doi.org/10.1109/ICSSP-ICGSE52873.2021.00021

