35,447 research outputs found

    An Adverse Outcome Pathway for Potential Space Radiation Induced Neurological Diseases

    Get PDF
    Astronauts have begun to spend increasingly longer periods in space, putting themselves in foreign environments in order to explore the unknown. Space radiation is one of the largest health risks faced by astronauts on their missions. The space radiation environment has the ability to cause high levels of irreversible damage. Multiple sources of charged particle radiation exist in the space environment that may increase risk of carcinogenesis, degeneration of bodily tissue (e.g. gastrointestinal, cardiovascular, or pulmonary), acute radiation syndromes, and acute and late central nervous system (CNS) disorders. In order to help inform an understanding of the risk of degenerative CNS disease due to radiation exposure, an initial step is presented here to develop an adverse outcome pathway from radiation exposure focused on Alzheimers disease

    Single fermion manipulation via superconducting phase differences in multiterminal Josephson junctions

    Get PDF
    We show how the superconducting phase difference in a Josephson junction may be used to split the Kramers degeneracy of its energy levels and to remove all the properties associated with time reversal symmetry. The superconducting phase difference is known to be ineffective in two-terminal short Josephson junctions, where irrespective of the junction structure the induced Kramers degeneracy splitting is suppressed and the ground state fermion parity must stay even, so that a protected zero-energy Andreev level crossing may never appear. Our main result is that these limitations can be completely avoided by using multi-terminal Josephson junctions. There the Kramers degeneracy breaking becomes comparable to the superconducting gap, and applying phase differences may cause the change of the ground state fermion parity from even to odd. We prove that the necessary condition for the appearance of a fermion parity switch is the presence of a "discrete vortex" in the junction: the situation when the phases of the superconducting leads wind by 2π2\pi. Our approach offers new strategies for creation of Majorana bound states as well as spin manipulation. Our proposal can be implemented using any low density, high spin-orbit material such as InAs quantum wells, and can be detected using standard tools.Comment: Source code available as ancillary files. 10 pages, 7 figures. v2: minor changes, published versio

    Controlling Condensate Collapse and Expansion with an Optical Feshbach Resonance

    Full text link
    We demonstrate control of the collapse and expansion of an 88Sr Bose-Einstein condensate using an optical Feshbach resonance (OFR) near the 1S0-3P1 intercombination transition at 689 nm. Significant changes in dynamics are caused by modifications of scattering length by up to +- ?10a_bg, where the background scattering length of 88Sr is a_bg = -2a0 (1a0 = 0.053 nm). Changes in scattering length are monitored through changes in the size of the condensate after a time-of-flight measurement. Because the background scattering length is close to zero, blue detuning of the OFR laser with respect to a photoassociative resonance leads to increased interaction energy and a faster condensate expansion, whereas red detuning triggers a collapse of the condensate. The results are modeled with the time-dependent nonlinear Gross-Pitaevskii equation.Comment: 5 pages, 3 figure

    An opioid-like system regulating feeding behavior in C. elegans

    Get PDF
    Neuropeptides are essential for the regulation of appetite. Here we show that neuropeptides could regulate feeding in mutants that lack neurotransmission from the motor neurons that stimulate feeding muscles. We identified nlp-24 by an RNAi screen of 115 neuropeptide genes, testing whether they affected growth. NLP-24 peptides have a conserved YGGXX sequence, similar to mammalian opioid neuropeptides. In addition, morphine and naloxone respectively stimulated and inhibited feeding in starved worms, but not in worms lacking NPR-17, which encodes a protein with sequence similarity to opioid receptors. Opioid agonists activated heterologously expressed NPR-17, as did at least one NLP-24 peptide. Worms lacking the ASI neurons, which express npr-17, did not response to naloxone. Thus, we suggest that Caenorhabditis elegans has an endogenous opioid system that acts through NPR-17, and that opioids regulate feeding via ASI neurons. Together, these results suggestC. elegans may be the first genetically tractable invertebrate opioid model

    Maternal short stature does not predict their children's fatness indicators in a nutritional dual-burden sample of urban Mexican Maya.

    Get PDF
    The co-existence of very short stature due to poor chronic environment in early life and obesity is becoming a public health concern in rapidly transitioning populations with high levels of poverty. Individuals who have very short stature seem to be at an increased risk of obesity in times of relative caloric abundance. Increasing evidence shows that an individual is influenced by exposures in previous generations. This study assesses whether maternal poor early life environment predicts her child's adiposity using cross sectional design on Maya schoolchildren aged 7-9 and their mothers (n = 57 pairs). We compared maternal chronic early life environment (stature) with her child's adiposity (body mass index [BMI] z-score, waist circumference z-score, and percentage body fat) using multiple linear regression, controlling for the child's own environmental exposures (household sanitation and maternal parity). The research was performed in the south of Merida, Yucatan, Mexico, a low socioeconomic urban area in an upper middle income country. The Maya mothers were very short, with a mean stature of 147 cm. The children had fairly high adiposity levels, with BMI and waist circumference z-scores above the reference median. Maternal stature did not significantly predict any child adiposity indicator. There does not appear to be an intergenerational component of maternal early life chronic under-nutrition on her child's obesity risk within this free living population living in poverty. These results suggest that the co-existence of very short stature and obesity appears to be primarily due to exposures and experiences within a generation rather than across generations

    Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium

    Get PDF
    Detonation propagation in a compressible medium wherein the energy release has been made spatially inhomogeneous is examined via numerical simulation. The inhomogeneity is introduced via step functions in the reaction progress variable, with the local value of energy release correspondingly increased so as to maintain the same average energy density in the medium, and thus a constant Chapman Jouguet (CJ) detonation velocity. A one-step Arrhenius rate governs the rate of energy release in the reactive zones. The resulting dynamics of a detonation propagating in such systems with one-dimensional layers and two-dimensional squares are simulated using a Godunov-type finite-volume scheme. The resulting wave dynamics are analyzed by computing the average wave velocity and one-dimensional averaged wave structure. In the case of sufficiently inhomogeneous media wherein the spacing between reactive zones is greater than the inherent reaction zone length, average wave speeds significantly greater than the corresponding CJ speed of the homogenized medium are obtained. If the shock transit time between reactive zones is less than the reaction time scale, then the classical CJ detonation velocity is recovered. The spatio-temporal averaged structure of the waves in these systems is analyzed via a Favre averaging technique, with terms associated with the thermal and mechanical fluctuations being explicitly computed. The analysis of the averaged wave structure identifies the super-CJ detonations as weak detonations owing to the existence of mechanical non-equilibrium at the effective sonic point embedded within the wave structure. The correspondence of the super-CJ behavior identified in this study with real detonation phenomena that may be observed in experiments is discussed

    Landslide Detection Using Residual Networks and the Fusion of Spectral and Topographic Information

    Full text link
    • 

    corecore