7,139 research outputs found
Recommended from our members
Probing Reactivity of Gold Atoms with Acetylene and Ethylene with VUV Photoionization Mass Spectrometry and Ab Initio Studies.
Reaction of gold atoms with acetylene and ethylene in a laser ablation source produces a number of gold-containing species. Their photoionization efficiency (PIE) curves are measured using tunable vacuum ultraviolet (VUV) radiation at the Advanced Light Source. Their structures are assigned by comparing the experimental ionization energies and PIE curves to those of potential isomers calculated at the CAM-B3LYP/aug-cc-pVTZ level. For smaller molecules, the contribution of ionization to excited electronic states of the cation is also included using photoionization cross sections calculated using ePolyScat. Reaction with acetylene produces adducts Au(C2H2) and Au(C2H2)2, as well as HAu(C4H2). Reaction with ethylene leads to adducts Au(C2H4), Au(C2H4)2, an adduct with a gold dimer, Au2(C2H4), as well as the gold hydrides AuH, HAu(C2H4), and HAu(C4H4). [Au,C4,H7] is also observed, and it likely corresponds to a gold alkyl, H2C═C(H)-Au(C2H4). Reactions leading to production of odd-hydrogen species are endothermic and are likely due to translationally or electronically excited gold atoms. These measurements provide the first directly measured ionization energy for gold hydride, IE(AuH) = 10.25 ± 0.05 eV. Combining this value with the dissociation energy of AuH+ gives a dissociation energy D0(AuH) = 3.15 ± 0.12 eV. Several other ionization energies are measured: IE(Au2(C2H4)) = 8.42 ± 0.05 eV, IE(HAu(C2H4)) = 9.35 ± 0.05 eV, IE(HAu(C4H2)) = 8.8 ± 0.1 eV, and IE(HAu(C4H4)) = 8.8 ± 0.1 eV
Dispersion analysis for generalized spin polarizabilities
We report on a dispersion relation formalism for the virtual Compton
scattering (VCS) reaction on the proton, which for the first time allows a
dispersive evaluation of 4 generalized polarizabilities. The dispersion
formalism provides a new tool to analyze VCS experiments above pion threshold,
thus increasing the sensitivity to the generalized polarizabilities of the
nucleon.Comment: 5pages, 2 figures, to appear in the Proceedings of the Symposium on
the Gerasimov-Drell-Hearn Sum Rule and the Spin Structure in the Nucleon
Resonance Region (GDH2000), June 14-17 2000, Mainz, German
Twist-2 Generalized TMDs and the Spin/Orbital Structure of the Nucleon
Generalized transverse-momentum dependent parton distributions (GTMDs) encode
the most general parton structure of hadrons. Here we focus on two twist-2
GTMDs which are denoted by and in parts of the literature.
As already shown previously, both GTMDs have a close relation to orbital
angular momentum of partons inside a hadron. However, recently even the mere
existence of and has been doubted. We explain why this
claim does not hold. We support our model-independent considerations by
calculating the two GTMDs in the scalar diquark model and in the quark-target
model, where we also explicitly check the relation to orbital angular momentum.
In addition, we compute and at large transverse momentum in
perturbative Quantum Chromodynamics and show that they are nonzero.Comment: 29 pages, 6 figures; two clarifications and a reference added;
version to appear in Phys. Rev.
Dispersion relation formalism for virtual Compton scattering off the proton
We present in detail a dispersion relation formalism for virtual Compton
scattering (VCS) off the proton from threshold into the
-resonance region. Such a formalism can be used as a tool to
extract the generalized polarizabilities of the proton from both unpolarized
and polarized VCS observables over a larger energy range. We present
calculations for existing and forthcoming VCS experiments and demonstrate that
the VCS observables in the energy region between pion production threshold and
the -resonance show an enhanced sensitivity to the generalized
polarizabilities.Comment: 51 pages, 15 figure
Origin and assessment of bruises in beef cattle at slaughter
Studies of bruises, as detected on carcasses at the slaughterhouse, may provide useful information about the traumatic situations the animals endure during the pre-slaughter period. In this paper, we review scientific data on the prevalence, risk factors and estimation of the age of bruises in beef cattle. Risk factors such as animal characteristics, transport conditions, stocking density, livestock auction and handling of the animals are discussed. Investigation of the age of bruises could provide information on when in the meat chain bruises occur and, could help to pinpoint where preventive measures should be taken, from the stage of collecting the animals on the farm until slaughter. We review the methods available to assess the age of the bruises; data on human forensic research are also included. The feasibility to identify traumatic episodes during the pre-slaughter period, in order to improve animal welfare is discusse
Dispersion relation formalism for virtual Compton scattering and the generalized polarizabilities of the nucleon
A dispersion relation formalism for the virtual Compton scattering (VCS)
reaction on the proton is presented, which for the first time allows a
dispersive evaluation of 4 generalized polarizabilities at a four-momentum
transfer 0.5 GeV. The dispersive integrals are calculated using
a state-of-the-art pion photo- and electroproduction analysis. The dispersion
formalism provides a new tool to analyze VCS experiments above pion threshold,
thus increasing the sensitivity to the generalized polarizabilities of the
nucleon.Comment: 4 pages, 2 figure
Observing collapse in two colliding dipolar Bose-Einstein condensates
We study the collision of two Bose-Einstein condensates with pure dipolar
interaction. A stationary pure dipolar condensate is known to be stable when
the atom number is below a critical value. However, collapse can occur during
the collision between two condensates due to local density fluctuations even if
the total atom number is only a fraction of the critical value. Using full
three-dimensional numerical simulations, we observe the collapse induced by
local density fluctuations. For the purpose of future experiments, we present
the time dependence of the density distribution, energy per particle and the
maximal density of the condensate. We also discuss the collapse time as a
function of the relative phase between the two condensates.Comment: 6 pages, 7 figure
Macroscopic quantum jumps and entangled state preparation
Recently we predicted a random blinking, i.e. macroscopic quantum jumps, in
the fluorescence of a laser-driven atom-cavity system [Metz et al., Phys. Rev.
Lett. 97, 040503 (2006)]. Here we analyse the dynamics underlying this effect
in detail and show its robustness against parameter fluctuations. Whenever the
fluorescence of the system stops, a macroscopic dark period occurs and the
atoms are shelved in a maximally entangled ground state. The described setup
can therefore be used for the controlled generation of entanglement. Finite
photon detector efficiencies do not affect the success rate of the state
preparation, which is triggered upon the observation of a macroscopic
fluorescence signal. High fidelities can be achieved even in the vicinity of
the bad cavity limit due to the inherent role of dissipation in the jump
process.Comment: 14 pages, 12 figures, proof of the robustness of the state
preparation against parameter fluctuations added, figure replace
CCS from industrial sources
The literature concerning the application of CCS to industry is reviewed. Costs are presented for different sectors including ``high purity'' (processes which inherently produce a high concentration of CO2), cement, iron and steel, refinery and biomass. The application of CCS to industry is a field which has had much less attention than its application to the electricity production sector. Costs range from less than 2011 100/tCO 2 . In the words of a synthesis report from the United Nations Industrial Development Organisation (UNIDO) ``This area has so far not been the focus of discussions and therefore much attention needs to be paid to the application of CCS to industrial sources if the full potential of CCS is to be unlocked''
Localization of a dipolar Bose-Einstein condensate in a bichromatic optical lattice
By numerical simulation and variational analysis of the Gross-Pitaevskii
equation we study the localization, with an exponential tail, of a dipolar
Bose-Einstein condensate (DBEC) of Cr atoms in a three-dimensional
bichromatic optical-lattice (OL) generated by two monochromatic OL of
incommensurate wavelengths along three orthogonal directions. For a fixed
dipole-dipole interaction, a localized state of a small number of atoms () could be obtained when the short-range interaction is not too attractive
or not too repulsive. A phase diagram showing the region of stability of a DBEC
with short-range interaction and dipole-dipole interaction is given
- …
