1,082 research outputs found
Thermally damped linear compressional waves in a 2D solar coronal model
The high resolution observations (TRACE and SOHO) of waves in coronal structures have revealed a rapid damping of modes, sometimes their damping length being of the same order as their wavelength. The rapid damping of modes in coronal loops permits us to derive values for magnetic field and transport coefficients. In this contribution we study the damping of linear compressional waves considering a two-dimensional propagation in gravitationally stratified plasma in the presence of thermal conduction. By considering this 2D model, we show that the presence of an additional transversal motion has an important effect on the damping of the waves. This theoretical model allows as to conclude that the main effects influencing the damping of the waves are the degree of the transversal structuring and temperature
The Effect of Consumption Based Taxes on Agriculture in the United States
Recently several proposals have arisen to replace the current income tax system in the United States with a consumption based or Fair Tax. This study investigates the effect of such a consumption based tax on agricultural investment decisions using stochastic optimal control to model the investment decision at the farm level. The results indicate that a consumption tax rate of 25.9 percent would be equivalent to the income tax rate paid by very large producers in the United States.Public Economics,
Quo vadis radiotherapy? Technological advances and the rising problems in cancer management
Extent: 10p.Purpose. Despite the latest technological advances in radiotherapy, cancer control is still challenging for several tumour sites. The survival rates for the most deadly cancers, such as ovarian and pancreatic, have not changed over the last decades. The solution to the problem lies in the change of focus: from local treatment to systemic therapy. The aim of this paper is to present the current status as well as the gaps in radiotherapy and, at the same time, to look into potential solutions to improve cancer control and survival. Methods. The currently available advanced radiotherapy treatment techniques have been analysed and their cost-effectiveness discussed. The problem of systemic disease management was specifically targeted. Results. Clinical studies show limited benefit in cancer control from hadron therapy. However, targeted therapies together with molecular imaging could improve treatment outcome for several tumour sites while controlling the systemic disease. Conclusion. The advances in photon therapy continue to be competitive with the much more expensive hadron therapy. To justify the cost effectiveness of proton/heavy ion therapy, there is a need for phase III randomised clinical trials. Furthermore, the success of systemic disease management lies in the fusion between radiation oncology technology and microbiology.Barry J. Allen, Eva Bezak, and Loredana G. Marc
Multiple cyclotron line-forming regions in GX 301-2
We present two observations of the high-mass X-ray binary GX 301-2 with
NuSTAR, taken at different orbital phases and different luminosities. We find
that the continuum is well described by typical phenomenological models, like a
very strongly absorbed NPEX model. However, for a statistically acceptable
description of the hard X-ray spectrum we require two cyclotron resonant
scattering features (CRSF), one at ~35 keV and the other at ~50 keV. Even
though both features strongly overlap, the good resolution and sensitivity of
NuSTAR allows us to disentangle them at >=99.9% significance. This is the first
time that two CRSFs are seen in GX 301-2. We find that the CRSFs are very
likely independently formed, as their energies are not harmonically related
and, if it were a single line, the deviation from a Gaussian shape would be
very large. We compare our results to archival Suzaku data and find that our
model also provides a good fit to those data. We study the behavior of the
continuum as well as the CRSF parameters as function of pulse phase in seven
phase bins. We find that the energy of the 35 keV CRSF varies smoothly as
function of phase, between 30-38 keV. To explain this variation, we apply a
simple model of the accretion column, taking the altitude of the line-forming
region, the velocity of the in-falling material, and the resulting relativistic
effects into account. We find that in this model the observed energy variation
can be explained simply due to a variation of the projected velocity and
beaming factor of the line forming region towards us.Comment: 18 pages, 10 figures, accepted for publication in A&
Spectral and Timing Analysis of the accretion-powered pulsar 4U 1626-67 observed with Suzaku and NuSTAR
We present an analysis of the spectral shape and pulse profile of the
accretion-powered pulsar 4U 1626-67 observed with Suzaku and NuSTAR during a
spin-up state. The pulsar, which experienced a torque reversal to spin-up in
2008, has a spin period of 7.7 s. Comparing the phase-averaged spectra obtained
with Suzaku in 2010 and with NuSTAR in 2015, we find that the spectral shape
changed between the two observations: the 3-10 keV flux increased by 5% while
the 30-60 keV flux decreased significantly by 35%. Phase-averaged and
phase-resolved spectral analysis shows that the continuum spectrum observed by
NuSTAR is well described by an empirical NPEX continuum with an added broad
Gaussian emission component around the spectral peak at 20 keV. Taken together
with the observed Pdot value obtained from Fermi/GBM, we conclude that the
spectral change between the Suzaku and NuSTAR observations was likely caused by
an increase of the accretion rate. We also report the possible detection of
asymmetry in the profile of the fundamental cyclotron line. Furthermore, we
present a study of the energy-resolved pulse profiles using a new relativistic
ray tracing code, where we perform a simultaneous fit to the pulse profiles
assuming a two-column geometry with a mixed pencil- and fan-beam emission
pattern. The resulting pulse profile decompositions enable us to obtain
geometrical parameters of accretion columns (inclination, azimuthal and polar
angles) and a fiducial set of beam patterns. This information is important to
validate the theoretical predictions from radiation transfer in a strong
magnetic field.Comment: 19 pages, 14 figures, Accepted for publication in ApJ on May 5, 201
Using Synchronic and Diachronic Relations for Summarizing Multiple Documents Describing Evolving Events
In this paper we present a fresh look at the problem of summarizing evolving
events from multiple sources. After a discussion concerning the nature of
evolving events we introduce a distinction between linearly and non-linearly
evolving events. We present then a general methodology for the automatic
creation of summaries from evolving events. At its heart lie the notions of
Synchronic and Diachronic cross-document Relations (SDRs), whose aim is the
identification of similarities and differences between sources, from a
synchronical and diachronical perspective. SDRs do not connect documents or
textual elements found therein, but structures one might call messages.
Applying this methodology will yield a set of messages and relations, SDRs,
connecting them, that is a graph which we call grid. We will show how such a
grid can be considered as the starting point of a Natural Language Generation
System. The methodology is evaluated in two case-studies, one for linearly
evolving events (descriptions of football matches) and another one for
non-linearly evolving events (terrorist incidents involving hostages). In both
cases we evaluate the results produced by our computational systems.Comment: 45 pages, 6 figures. To appear in the Journal of Intelligent
Information System
Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling
Electron cyclotron resonant scattering features (CRSFs) are observed as
absorption-like lines in the spectra of X-ray pulsars. A significant fraction
of the computing time for Monte Carlo simulations of these quantum mechanical
features is spent on the calculation of the mean free path for each individual
photon before scattering, since it involves a complex numerical integration
over the scattering cross section and the (thermal) velocity distribution of
the scattering electrons.
We aim to numerically calculate interpolation tables which can be used in
CRSF simulations to sample the mean free path of the scattering photon and the
momentum of the scattering electron. The tables also contain all the
information required for sampling the scattering electron's final spin.
The tables were calculated using an adaptive Simpson integration scheme. The
energy and angle grids were refined until a prescribed accuracy is reached. The
tables are used by our simulation code to produce artificial CRSF spectra. The
electron momenta sampled during these simulations were analyzed and justified
using theoretically determined boundaries.
We present a complete set of tables suited for mean free path calculations of
Monte Carlo simulations of the cyclotron scattering process for conditions
expected in typical X-ray pulsar accretion columns (0.01<B/B_{crit}<=0.12,
where B_{crit}=4.413x10^{13} G and 3keV<=kT<15keV). The sampling of the tables
is chosen such that the results have an estimated relative error of at most
1/15 for all points in the grid. The tables are available online at
http://www.sternwarte.uni-erlangen.de/research/cyclo.Comment: A&A, in pres
- …
