2,583 research outputs found
The impact of celestial pole offset modelling on VLBI UT1 Intensive results
Very Long Baseline Interferometry (VLBI) Intensive sessions are scheduled to
provide operational Universal Time (UT1) determinations with low latency. UT1
estimates obtained from these observations heavily depend on the model of the
celestial pole motion used during data processing. However, even the most
accurate precession-nutation model, IAU 2000/2006, is not accurate enough to
realize the full potential of VLBI observations. To achieve the highest
possible accuracy in UT1 estimates, a celestial pole offset (CPO), which is the
difference between the actual and modelled precession-nutation angles, should
be applied. Three CPO models are currently available for users. In this paper,
these models have been tested and the differences between UT1 estimates
obtained with those models are investigated. It has been shown that neglecting
CPO modelling during VLBI UT1 Intensive processing causes systematic errors in
UT1 series of up to 20 microarcseconds. It has been also found that using
different CPO models causes the differences in UT1 estimates reaching 10
microarcseconds. Obtained results are applicable to the satellite data
processing as well.Comment: 8 pp., accepted for publication in Journal of Geodes
Time dependent nonclassical properties of even and odd nonlinear coherent states
We construct even and odd nonlinear coherent states of a parametric
oscillator and examine their nonclassical properties.It has been shown that
these superpositions exhibit squeezing and photon antibunching which change
with time.Comment: 3 eps figure
Analysis of the Accuracy of Prediction of the Celestial Pole Motion
VLBI observations carried out by global networks provide the most accurate
values of the precession-nutation angles determining the position of the
celestial pole; as a rule, these results become available two to four weeks
after the observations. Therefore, numerous applications, such as satellite
navigation systems, operational determination of Universal Time, and space
navigation, use predictions of the coordinates of the celestial pole. In
connection with this, the accuracy of predictions of the precession- nutation
angles based on observational data obtained over the last three years is
analyzed for the first time, using three empiric nutation models---namely,
those developed at the US Naval Observatory, the Paris Observatory, and the
Pulkovo Observatory. This analysis shows that the last model has the best of
accuracy in predicting the coordinates of the celestial pole. The rms error for
a one-month prediction proposed by this model is below 100 microarcsecond.Comment: 13 p
Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields
Contrary to the well known spin qubits, rare-earth qubits are characterized
by a strong influence of crystal field due to large spin-orbit coupling. At low
temperature and in the presence of resonance microwaves, it is the magnetic
moment of the crystal-field ground-state which nutates (for several s) and
the Rabi frequency is anisotropic. Here, we present a study of the
variations of with the magnitude and direction of the
static magnetic field for the odd Er isotope in a single
crystal CaWO:Er. The hyperfine interactions split the
curve into eight different curves which are fitted
numerically and described analytically. These "spin-orbit qubits" should allow
detailed studies of decoherence mechanisms which become relevant at high
temperature and open new ways for qubit addressing using properly oriented
magnetic fields
Noether's Theorem and time-dependent quantum invariants
The time dependent-integrals of motion, linear in position and momentum
operators, of a quantum system are extracted from Noether's theorem
prescription by means of special time-dependent variations of coordinates. For
the stationary case of the generalized two-dimensional harmonic oscillator, the
time-independent integrals of motion are shown to correspond to special
Bragg-type symmetry properties. A detailed study for the non-stationary case of
this quantum system is presented. The linear integrals of motion are
constructed explicitly for the case of varying mass and coupling strength. They
are obtained also from Noether's theorem. The general treatment for a
multi-dimensional quadratic system is indicated, and it is shown that the
time-dependent variations that give rise to the linear invariants, as conserved
quantities, satisfy the corresponding classical homogeneous equations of motion
for the coordinates.Comment: Plain TeX, 23 pages, preprint of Instituto de Ciencias Nucleares,
UNAM Departamento de F\ii sica and Matem\'aticas Aplicadas, No. 01 (1994
Decoherence window and electron-nuclear cross-relaxation in the molecular magnet V 15
Rabi oscillations in the V_15 Single Molecule Magnet (SMM) embedded in the
surfactant DODA have been studied at different microwave powers. An intense
damping peak is observed when the Rabi frequency Omega_R falls in the vicinity
of the Larmor frequency of protons w_N, while the damping time t_R of
oscillations reaches values 10 times shorter than the phase coherence time t_2
measured at the same temperature. The experiments are interpreted by the N-spin
model showing that t_R is directly associated with the decoherence via
electronic/nuclear spin cross-relaxation in the rotating reference frame. It is
shown that this decoherence is accompanied with energy dissipation in the range
of the Rabi frequencies w_N - sigma_e < Omega_R < w_N, where sigma_e is the
mean super-hyperfine field (in frequency units) induced by protons at SMMs.
Weaker damping without dissipation takes place outside this dissipation window.
Simple local field estimations suggest that this rapid cross-relaxation in
resonant microwave field observed for the first time in SMMV_15 should take
place in other SMMs like Fe_8 and Mn_12 containing protons, too
Supersymmetry of the Nonstationary Schr\"odinger equation and Time-Dependent Exactly Solvable Quantum Models
New exactly solvable quantum models are obtained with the help of the
supersymmetric extencion of the nonstationary Schr/"odinger equation.Comment: Talk at the 8th International Conference "Symmetry Methods in
Physics". Dubna, Russia, 28 July - 2 August, 199
Simulations of magnetic and magnetoelastic properties of Tb2Ti2O7 in paramagnetic phase
Magnetic and magnetoelastic properties of terbium titanate pyrochlore in
paramagnetic phase are simulated. The magnetic field and temperature
dependences of magnetization and forced magnetostriction in Tb2Ti2O7 single
crystals and polycrystalline samples are calculated in the framework of
exchange charge model of crystal field theory and a mean field approximation.
The set of electron-deformation coupling constants has been determined.
Variations of elastic constants with temperature and applied magnetic field are
discussed. Additional strong softening of the crystal lattice at liquid helium
temperatures in the magnetic field directed along the rhombic symmetry axis is
predicted.Comment: 13 pages, 4 figures, 2 table
Evolution of squeezed states under the Fock-Darwin Hamiltonian
We develop a complete analytical description of the time evolution of
squeezed states of a charged particle under the Fock-Darwin Hamiltonian and a
time-dependent electric field. This result generalises a relation obtained by
Infeld and Pleba\'nski for states of the one-dimensional harmonic oscillator.
We relate the evolution of a state-vector subjected to squeezing to that of
state which is not subjected to squeezing and for which the time-evolution
under the simple harmonic oscillator dynamics is known (e.g. an eigenstate of
the Hamiltonian). A corresponding relation is also established for the Wigner
functions of the states, in view of their utility in the analysis of cold-ion
experiments. In an appendix, we compute the response functions of the FD
Hamiltonian to an external electric field, using the same techniques as in the
main text
Supersymmetry and a Time-Dependent Landau System
A general technique is outlined for investigating supersymmetry properties of
a charged spin-\half quantum particle in time-varying electromagnetic fields.
The case of a time-varying uniform magnetic induction is examined and shown to
provide a physical realization of a supersymmetric quantum-mechanical system.
Group-theoretic methods are used to factorize the relevant Schr\"odinger
equations and obtain eigensolutions. The supercoherent states for this system
are constructed.Comment: 47 pages, submitted to Phys. Rev. A, LaTeX, IUHET 243 and
LA-UR-93-20
- …
