research

Noether's Theorem and time-dependent quantum invariants

Abstract

The time dependent-integrals of motion, linear in position and momentum operators, of a quantum system are extracted from Noether's theorem prescription by means of special time-dependent variations of coordinates. For the stationary case of the generalized two-dimensional harmonic oscillator, the time-independent integrals of motion are shown to correspond to special Bragg-type symmetry properties. A detailed study for the non-stationary case of this quantum system is presented. The linear integrals of motion are constructed explicitly for the case of varying mass and coupling strength. They are obtained also from Noether's theorem. The general treatment for a multi-dimensional quadratic system is indicated, and it is shown that the time-dependent variations that give rise to the linear invariants, as conserved quantities, satisfy the corresponding classical homogeneous equations of motion for the coordinates.Comment: Plain TeX, 23 pages, preprint of Instituto de Ciencias Nucleares, UNAM Departamento de F\ii sica and Matem\'aticas Aplicadas, No. 01 (1994

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 16/03/2019