8,412 research outputs found
Recommended from our members
A RISC-V Vector Processor With Simultaneous-Switching Switched-Capacitor DC-DC Converters in 28 nm FDSOI
This work demonstrates a RISC-V vector microprocessor implemented in 28 nm FDSOI with fully integrated simultaneous-switching switched-capacitor DC-DC (SC DC-DC) converters and adaptive clocking that generates four on-chip voltages between 0.45 and 1 V using only 1.0 V core and 1.8 V IO voltage inputs. The converters achieve high efficiency at the system level by switching simultaneously to avoid charge-sharing losses and by using an adaptive clock to maximize performance for the resulting voltage ripple. Details about the implementation of the DC-DC switches, DC-DC controller, and adaptive clock are provided, and the sources of conversion loss are analyzed based on measured results. This system pushes the capabilities of dynamic voltage scaling by enabling fast transitions (20 ns), simple packaging (no off-chip passives), low area overhead (16%), high conversion efficiency (80%-86%), and high energy efficiency (26.2 DP GFLOPS/W) for mobile devices
Modeling the X-rays Resulting from High Velocity Clouds
With the goal of understanding why X-rays have been reported near some high
velocity clouds, we perform detailed 3 dimensional hydrodynamic and
magnetohydrodynamic simulations of clouds interacting with environmental gas
like that in the Galaxy's thick disk/halo or the Magellanic Stream. We examine
2 scenarios. In the first, clouds travel fast enough to shock-heat warm
environmental gas. In this scenario, the X-ray productivity depends strongly on
the speed of the cloud and the radiative cooling rate. In order to shock-heat
environmental gas to temperatures of > or = 10^6 K, cloud speeds of > or = 300
km/s are required. If cooling is quenched, then the shock-heated ambient gas is
X-ray emissive, producing bright X-rays in the 1/4 keV band and some X-rays in
the 3/4 keV band due to O VII and other ions. If, in contrast, the radiative
cooling rate is similar to that of collisional ionizational equilibrium plasma
with solar abundances, then the shocked gas is only mildly bright and for only
about 1 Myr. The predicted count rates for the non-radiative case are bright
enough to explain the count rate observed with XMM-Newton toward a Magellanic
Stream cloud and some enhancement in the ROSAT 1/4 keV count rate toward
Complex C, while the predicted count rates for the fully radiative case are
not. In the second scenario, the clouds travel through and mix with hot ambient
gas. The mixed zone can contain hot gas, but the hot portion of the mixed gas
is not as bright as those from the shock-heating scenario.Comment: 15 pages, 9 figures, 1 table. Accepted for publication in the
Astrophysical Journa
Enhancing 2D Growth of Organic Semiconductor Thin Films with Macroporous Structures via a Small-Molecule Heterointerface
The physical structure of an organic solid is strongly affected by the surface of the underlying substrate. Controlling this interface is an important issue to improve device performance in the organic electronics community. Here we report an approach that utilizes an organic heterointerface to improve the crystallinity and control the morphology of an organic thin film. Pentacene is used as an active layer above, and m-bis(triphenylsilyl) benzene is used as the bottom layer. Sequential evaporations of these materials result in extraordinary morphology with far fewer grain boundaries and myriad nanometre-sized pores. These peculiar structures are formed by difference in molecular interactions between the organic layers and the substrate surface. The pentacene film exhibits high mobility up to 6.3 cm(2)V(-1)s(-1), and the pore-rich structure improves the sensitivity of organic-transistor-based chemical sensors. Our approach opens a new way for the fabrication of nanostructured semiconducting layers towards high-performance organic electronics.X116049Nsciescopu
Driven Diffusive Systems: How Steady States Depend on Dynamics
In contrast to equilibrium systems, non-equilibrium steady states depend
explicitly on the underlying dynamics. Using Monte Carlo simulations with
Metropolis, Glauber and heat bath rates, we illustrate this expectation for an
Ising lattice gas, driven far from equilibrium by an `electric' field. While
heat bath and Glauber rates generate essentially identical data for structure
factors and two-point correlations, Metropolis rates give noticeably weaker
correlations, as if the `effective' temperature were higher in the latter case.
We also measure energy histograms and define a simple ratio which is exactly
known and closely related to the Boltzmann factor for the equilibrium case. For
the driven system, the ratio probes a thermodynamic derivative which is found
to be dependent on dynamics
Invariances and Equations of Motion in Double Field Theory
We investigate the full set of equations of motion in double field theory and
discuss their O(D,D) symmetry and gauge transformation properties. We obtain a
Ricci-like tensor, its associated Bianchi identities, and relate our results to
those with a generalized metric formulation.Comment: 24 page
Connexin expression in cultured neonatal rat myocytes reflects the pattern of the intact ventricle
Objective: Primary cultures of neonatal rat ventricular myocytes have become a widely used model to examine a variety of functional, physiological and biochemical cardiac properties. In the adult rat, connexin43 (Cx43) is the major gap junction protein present in the working myocardium. In situ hybridization studies on developing rats, however, showed that Cx40 mRNA displays a dynamic and heterogeneous pattern of expression in the ventricular myocardium around birth. The present studies were performed to examine the expression pattern of the Cx40 protein in neonatal rat heart, and to examine the connexins present in cultures of ventricular myocytes obtained from those hearts. Methods: Cryosections were made of hearts of 1-day-old Wistar rats. Cultures of ventricular myocytes obtained from these hearts by enzymatic dissociation were seeded at various densities (to obtain >75, ∼50%, and 75% confluency) Cx43 and Cx40 immunoreactivity could be detected. In contrast to Cx43 immunolabeling which showed a homogeneous distribution pattern, Cx40 staining was heterogeneous, i.e. in some clusters of cells abundant labeling was present whereas in others no Cx40 staining could be detected. The pattern of Cx43 immunoreactivity was not altered by the culture density. In contrast, in isolated ventricular myocytes cultured at low density (<25% confluency) the relative number of cell—cell interfaces that were Cx40-immunopositive decreased as compared to high density cultures (35 vs. 70%). Western blots did not reveal significant differences in the level of Cx40 and Cx43 expression at different culture densities. Conclusions: These results show that cultured ventricular myocytes retained typical features of the native neonatal rat ventricular myocardium with regard to their composition of gap junctions. This implicates that these cultures may serve as a good model for studying short-term and long-term regulation of cardiac gap junction channel expression and functio
Orbital quantization in the high magnetic field state of a charge-density-wave system
A superposition of the Pauli and orbital coupling of a high magnetic field to
charge carriers in a charge-density-wave (CDW) system is proposed to give rise
to transitions between subphases with quantized values of the CDW wavevector.
By contrast to the purely orbital field-induced density-wave effects which
require a strongly imperfect nesting of the Fermi surface, the new transitions
can occur even if the Fermi surface is well nested at zero field. We suggest
that such transitions are observed in the organic metal
-(BEDT-TTF)KHg(SCN) under a strongly tilted magnetic field.Comment: 14 pages including 4 figure
Monte Carlo Simulation of Sinusoidally Modulated Superlattice Growth
The fabrication of ZnSe/ZnTe superlattices grown by the process of rotating
the substrate in the presence of an inhomogeneous flux distribution instead of
successively closing and opening of source shutters is studied via Monte Carlo
simulations. It is found that the concentration of each compound is
sinusoidally modulated along the growth direction, caused by the uneven arrival
of Se and Te atoms at a given point of the sample, and by the variation of the
Te/Se ratio at that point due to the rotation of the substrate. In this way we
obtain a ZnSeTe alloy in which the composition varies
sinusoidally along the growth direction. The period of the modulation is
directly controlled by the rate of the substrate rotation. The amplitude of the
compositional modulation is monotonous for small angular velocities of the
substrate rotation, but is itself modulated for large angular velocities. The
average amplitude of the modulation pattern decreases as the angular velocity
of substrate rotation increases and the measurement position approaches the
center of rotation. The simulation results are in good agreement with
previously published experimental measurements on superlattices fabricated in
this manner
Unusual low-temperature thermopower in the one-dimensional Hubbard model
The low-temperature thermoelectric power of the repulsive-interaction
one-dimensional Hubbard model is calculated using an asymptotic Bethe ansatz
for holons and spinons. The competition between the entropy carried by the
holons and that carried by the backflow of the spinons gives rise to an unusual
temperature and doping dependence of the thermopower which is qualitatively
similar to that observed in the normal state of high- superconductors.Comment: 11 pages, REVTEX 3.
- …
