38 research outputs found

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    Defining the Critical Hurdles in Cancer Immunotherapy

    Get PDF
    ABSTRACT: Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators, others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet be overcome to improve outcomes of patients with cancer

    Defining the critical hurdles in cancer immunotherapy

    Get PDF
    Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators; others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet if overcome, have the potential to improve outcomes of patients with cancer

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Proposal of induction shrink fit between disk and shaft

    No full text
    A complete proposal of induction shrink fit between a disk and shaft is presented. The proposal consists of two parts. First, a suitable interference between both parts has to be suggested that is be able to transfer the required mechanical torque at a permissible mechanical stress. Then, the process of induction heating of the disk before its putting on the shaft is mapped. The model of the process respecting all nonlinearities is solved numerically in the hard-coupled formulation. The methodology is illustrated by the example of induction shrink fit between the active wheel of gas turbine and shaft

    Study of suitable arrangement of axial electromagnetic clutch

    No full text
    A methodology of designing axial magnetic clutch is presented. Except for the prescribed force, the clutch must satisfy certain requirements concerning its temperature rise and several other aspects. The methodology is illustrated by two examples

    Electromagnetic friction clutch for fixing accurate position of sliding elements

    No full text
    A complete mathematical model of an electromagnetic friction clutch is presented, whose numerical solution provides its basic operation characteristics. The clutch represents a part of various devices working with the movable plunger and its purpose is to fix it in a prescribed accurate position. Its application is illustrated by a typical example

    Model of induction shrink fit between disk and shaft

    No full text
    A complete proposal of induction shrink fit between a disk and shaft is presented. The proposal consists of two parts. First, a suitable interference between both parts has to be suggested that is be able to transfer the required mechanical torque at a permissible mechanical stress. Then, the process of induction heating of the disk before its putting on the shaft is mapped. The model of the process respecting all nonlinearities is solved numerically in the hard-coupled formulation. The methodology is illustrated with the example of induction shrink fit between the active wheel of gas turbine and shaft

    Tumor-infiltrating B cell immunoglobulin variable region gene usage in invasive ductal breast carcinoma

    No full text
    A major focus of tumor immunology is to reveal the potential role and capacity of immunocompetent cells found in different solid tumor tissues. The most abundant infiltrating cells (TIL), the T lymphocytes have been investigated in details concerning T-cell receptor usage and specificity. However, B cells have hardly been investigated in this respect, although high cellular B-cell infiltration has been correlated with improved patients' survival in some breast carcinomas. This led to our objectives to study variable region gene usage of the tumor-infiltrating B cells in different breast carcinoma types. By defining the immunoglobulin repertoire of the tumor-infiltrating B lymphocytes in the most common invasive ductal carcinoma (IDC) of the breast we compared it to the rare medullary breast carcinoma (MBC). After phenotyping infiltrating ductal carcinomas, B cells were obtained from tumor tissue by microdissection technique. Numerous rearranged TIL-B immunoglobulin heavy chain V genes (VH) were amplified, cloned, sequenced, and comparatively analyzed. Some characteristics were found for both breast carcinoma types. The immunoglobulins produced by TIL-B in ductal carcinoma are highly matured and oligoclonal. We conclude that Ig variable region gene usage reveals similar and distinguishable characteristics of TIL-B immunoglobulin repertoires, which are representative of the nature of the immune responses in invasive ductal and medullary breast carcinomas
    corecore