254 research outputs found

    Seamless Support of Low Latency Mobile Applications with NFV-Enabled Mobile Edge-Cloud

    Get PDF
    Emerging mobile multimedia applications, such as augmented reality, have stringent latency requirements and high computational cost. To address this, mobile edge-cloud (MEC) has been proposed as an approach to bring resources closer to users. Recently, in contrast to conventional fixed cloud locations, the advent of network function virtualization (NFV) has, with some added cost due to the necessary decentralization, enhanced MEC with new flexibility in placing MEC services to any nodes capable of virtualizing their resources. In this work, we address the question on how to optimally place resources among NFV- enabled nodes to support mobile multimedia applications with low latency requirement and when to adapt the current resource placements to address workload changes. We first show that the placement optimization problem is NP-hard and propose an online dynamic resource allocation scheme that consists of an adaptive greedy heuristic algorithm and a detection mechanism to identify the time when the system will no longer be able to satisfy the applications’ delay requirement. Our scheme takes into account the effect of current existing techniques (i.e., auto- scaling and load balancing). We design and implement a realistic NFV-enabled MEC simulated framework and show through ex- tensive simulations that our proposal always manages to allocate sufficient resources on time to guarantee continuous satisfaction of the application latency requirements under changing workload while incurring up to 40% less cost in comparison to existing overprovisioning approaches

    Cost-efficient Low Latency Communication Infrastructure for Synchrophasor Applications in Smart Grids

    Get PDF
    With the introduction of distributed renewable energy resources and new loads, such as electric vehicles, the power grid is evolving to become a highly dynamic system, that necessitates continuous and fine-grained observability of its operating conditions. In the context of the medium voltage (MV) grid, this has motivated the deployment of Phasor Measurement Units (PMUs), that offer high precision synchronized grid monitoring, enabling mission-critical applications such as fault detection/location. However, PMU-based applications present stringent delay requirements, raising a significant challenge to the communication infrastructure. In contrast to the high voltage domain, there is no clear vision for the communication and network topologies for the MV grid; a full fledged optical fiber-based communication infrastructure is a costly approach due to the density of PMUs required. In this work, we focus on the support of low-latency PMU-based applications in the MV domain, identifying and addressing the trade-off between communication infrastructure deployment costs and the corresponding performance. We study a large set of real MV grid topologies to get an in-depth understanding of the various key latency factors. Building on the gained insights, we propose three algorithms for the careful placement of high capacity links, targeting a balance between deployment costs and achieved latencies. Extensive simulations demonstrate that the proposed algorithms result in low-latency network topologies while reducing deployment costs by up to 80% in comparison to a ubiquitous deployment of costly high capacity links

    Cost-Efficient NFV-Enabled Mobile Edge-Cloud for Low Latency Mobile Applications

    Get PDF
    Mobile edge-cloud (MEC) aims to support low la- tency mobile services by bringing remote cloud services nearer to mobile users. However, in order to deal with dynamic workloads, MEC is deployed in a large number of fixed-location micro- clouds, leading to resource wastage during stable/low work- load periods. Limiting the number of micro-clouds improves resource utilization and saves operational costs, but faces service performance degradations due to insufficient physical capacity during peak time from nearby micro-clouds. To efficiently support services with low latency requirement under varying workload conditions, we adopt the emerging Network Function Virtualization (NFV)-enabled MEC, which offers new flexibility in hosting MEC services in any virtualized network node, e.g., access points, routers, etc. This flexibility overcomes the limitations imposed by fixed-location solutions, providing new freedom in terms of MEC service-hosting locations. In this paper, we address the questions on where and when to allocate resources as well as how many resources to be allocated among NFV- enabled MECs, such that both the low latency requirements of mobile services and MEC cost efficiency are achieved. We propose a dynamic resource allocation framework that consists of a fast heuristic-based incremental allocation mechanism that dynamically performs resource allocation and a reoptimization algorithm that periodically adjusts allocation to maintain a near- optimal MEC operational cost over time. We show through ex- tensive simulations that our flexible framework always manages to allocate sufficient resources in time to guarantee continuous satisfaction of applications’ low latency requirements. At the same time, our proposal saves up to 33% of cost in comparison to existing fixed-location MEC solutions

    Algorithms for Fault-Tolerant Placement of Stateful Virtualized Network Functions

    Get PDF
    Traditional network functions (NFs) such as firewalls are implemented in costly dedicated hardware. By decoupling NFs from physical devices, network function virtualization enables virtual network functions (VNF) to run in virtual machines (VMs). However, VNFs are vulnerable to various faults such as software and hardware failures. To enhance VNF fault tolerance, the deployment of backup VNFs in stand-by VM instances is necessary. In case of stateful VNFs, stand-by instances require constant state updates from active instances during its operation. This will guarantee a correct and seamless handover from failed instances to stand-by instances after failures. Nevertheless, such state updates to stand-by instances could consume significant network bandwidth resources and lead to potential admission failures for VNF requests. In this paper, we study the fault-tolerant VNF placement problem with the optimization objective of admitting as many requests as possible. In particular, the VNF placement of active/stand-by instances, the request routing paths to active instances, and state transfer paths to stand-by instances are jointly considered. We devise an efficient heuristic algorithm to solve this problem, and propose a bi-criteria approximation algorithm with performance guarantees for a special case of the problem. Simulations with realistic settings show that our algorithms can significantly improve the request admission rate compared to conventional approaches

    An Information-Centric Communication Infrastructure for Real-Time State Estimation of Active Distribution Networks

    Get PDF
    © 2010-2012 IEEE.The evolution toward emerging active distribution networks (ADNs) can be realized via a real-time state estimation (RTSE) application facilitated by the use of phasor measurement units (PMUs). A critical challenge in deploying PMU-based RTSE applications at large scale is the lack of a scalable and flexible communication infrastructure for the timely (i.e., sub-second) delivery of the high volume of synchronized and continuous synchrophasor measurements. We address this challenge by introducing a communication platform called C-DAX based on the information-centric networking (ICN) concept. With a topic-based publish-subscribe engine that decouples data producers and consumers in time and space, C-DAX enables efficient synchrophasor measurement delivery, as well as flexible and scalable (re)configuration of PMU data communication for seamless full observability of power conditions in complex and dynamic scenarios. Based on the derived set of requirements for supporting PMU-based RTSE in ADNs, we design the ICN-based C-DAX communication platform, together with a joint optimized physical network resource provisioning strategy, in order to enable the agile PMU data communications in near real-time. In this paper, C-DAX is validated via a field trial implementation deployed over a sample feeder in a real-distribution network; it is also evaluated through simulation-based experiments using a large set of real medium voltage grid topologies currently operating live in The Netherlands. This is the first work that applies emerging communication paradigms, such as ICN, to smart grids while maintaining the required hard real-time data delivery as demonstrated through field trials at national scale. As such, it aims to become a blueprint for the application of ICN-based general purpose communication platforms to ADNs

    Bayesian simultaneous equation models for the analysis of energy intake and partitioning in growing pigs

    Get PDF
    The objective of the current study was to develop Bayesian simultaneous equation models for modelling energy intake and partitioning in growing pigs. A key feature of the Bayesian approach is that parameters are assigned prior distributions, which may reflect the current state of nature. In the models, rates of metabolizable energy (ME) intake, protein deposition (PD) and lipid deposition (LD) were treated as dependent variables accounting for residuals being correlated. Two complementary equation systems were used to model ME intake (MEI), PD and LD. Informative priors were developed, reflecting current knowledge about metabolic scaling and partial efficiencies of PD and LD rates, whereas flat non-informative priors were used for the reminder of the parameters. The experimental data analysed originate from a balance and respiration trial with 17 cross-bred pigs of three genders (barrows, boars and gilts) selected on the basis of similar birth weight. The pigs were fed four diets based on barley, wheat and soybean meal supplemented with crystalline amino acids to meet or exceed Danish nutrient requirement standards. Nutrient balances and gas exchanges were measured at c. 25, 75, 120 and 150 kg body weight (BW) using metabolic cages and open circuit respiration chambers. A total of 56 measurements were performed. The sensitivity analysis showed that only the maintenance component was sensitive to the prior specification, and hence the maintenance estimate of 0·91 MJ ME/kg0·60 per day (0·95 credible interval (CrI): 0·78-1·09) should be interpreted with caution. It was shown that boars' ability to deposit protein was superior to that of barrows and gilts, as these had an estimated maximum PD (PDmax) of 250 g/day (0·95 CrI: 237-263), whereas the barrows and gilts had a PDmax of 210 g/day (0·95 CrI: 198-220). Furthermore, boars reached PDmax at 109 kg BW (0·95 CrI: 93·6-130), whereas barrows and gilts maximized PD at 81·7 kg BW (0·95 CrI: 75·6-89·5). At 25 kg BW, the boars partitioned on average 5-6% more of the ME above maintenance into PD than barrows and gilts, and this was progressively increased to 10-11% more than barrows and gilts at 150 kg BW. The Bayesian modelling framework can be used to further refine the analysis of data from metabolic studies in growing pigs. © Cambridge University Press 2012

    Fault Tolerant Placement of Stateful VNFs and Dynamic Fault Recovery in Cloud Networks

    Get PDF
    Traditional network functions such as firewalls are implemented in costly dedicated hardware. By decoupling network functions from physical devices, network function virtualization enables virtual network functions (VNF) to run in virtual machines (VMs). However, VNFs are vulnerable to various faults such as software and hardware failures. To enhance VNF fault tolerance, the deployment of backup VNFs in stand-by VM instances is necessary. In case of stateful VNFs, stand-by instances require constant state updates from active instances during its operation. This will guarantee a correct and seamless handover from failed instances to stand-by instances after failures. Nevertheless, such state updates to stand-by instances could consume significant network bandwidth resources and lead to potential admission failures for VNF requests. In this paper, we study the fault-tolerant VNF placement problem with the optimization objective of admitting as many requests as possible. In particular, the VNF placement of active/stand-by instances, the request routing paths to active instances, and state transfer paths to stand-by instances are jointly considered. We devise an efficient heuristic algorithm to solve this problem. For the fault tolerance problem without computing or bandwidth constraints, we also propose two bicriteria approximation algorithms with performance guarantees for a special case of the problem. Given the placement locations of VNFs, some of them may go faulty. We thus consider the dynamic fault recovery problem, for which we propose an approximation algorithm that dynamically switches traffic processing from faulty VNFs to normal ones. Simulations with realistic settings show that our algorithms can significantly improve the request admission rate compared to conventional approaches

    Application of phasor measurement units for monitoring power system dynamic performance

    Get PDF
    This Working Group is a sequel to a previous working group on Wide Area Monitoring and Control for Transmission Capability Enhancement, which published the Technical Brochure 330 in 2007. Since then the synchrophasor technology has advanced rapidly and many utilities around the world have installed hundreds of PMUs in their networks. In this Technical Brochure, we look at the current state of the technology and the extent to which it has been used in the industry. As the technology has matured, it is also important to understand the communication protocols used in synchrophasor networks and their relevant cyber-security issues. These concerns are briefly discussed in the brochure. The applications of Phasor Measurement Units (PMU) measurements reported here are divided into three categories: (a) applications already installed in utility networks, (b) applications that are well-tested, but not yet installed, and (c) applications that are beneficial to the industry, but not fully developed yet. The most common and mature applications are wide area monitoring, state estimation, and model validation. Out of these three applications, wide area monitoring is well established in the industry. The protection and control applications are emerging as evident from the reported examples. The experience of using remote synchrophasor measurements as feedback control signals is not widely reported by the industry. In parallel to this Working Group, Study Committee B5 had a Working Group on “Wide area protection and control technologies.” The Technical Brochure 664 published by this Working Group in September 2016 reviews synchrophasor technology and discusses the industry experience with wide area protection and control. The North American synchrophasor Initiative (NASPI) is another technical group that has gathered and reported a wide range of PMU experiences of industry and researchers. In summary, the field-tested applications presented in this Technical Brochure are a testimony to the confidence of utilities in the synchrophasor technology. The progress in state estimation techniques indicates that synchrophasor measurements will become a standard part of energy management and security assessment systems in the near future

    Computerized quality control of radioimmunoassay in Korea.

    Get PDF
    Automated data processing and quality control of radioimmunoassays offer not only increased speed but also a more thorough and statistically rigorous analysis of results. An external quality assessment scheme for serum thyroxine, triiodothyronine and thyroid stimulating hormone (TSH) assays was performed in five nuclear medicine laboratories in Korea to compare with the assay performances of the World Health Organization Radioimmunoassay Program. The required radioimmunoassay kits were supplied through the International Atomic Energy Agency (IAEA). We have determined the weighted root mean squared error, and variance ratio as the indices of standard curve and also the average batch coefficient of variation (ABCV) as the parameters of response error relationship curve and precision profile. There was a good fit for the triiodothyronine assay, but 3 of 5 laboratories showed possible bad fit in the T4 and TSH assay systems. The ABCV was less than 5 percent for the T3 and T4 assay system, however for the TSH system, only 1 laboratory showed the ABCV value of less than 5 percent. We have also calculated the within batch variation (drift) and between laboratory variations
    corecore