5,268 research outputs found

    Changing Face of Agricultural Lending

    Get PDF
    Agricultural Finance,

    Correlation Between Student Collaboration Network Centrality and Academic Performance

    Full text link
    We compute nodal centrality measures on the collaboration networks of students enrolled in three upper-division physics courses, usually taken sequentially, at the Colorado School of Mines. These are complex networks in which links between students indicate assistance with homework. The courses included in the study are intermediate Classical Mechanics, introductory Quantum Mechanics, and intermediate Electromagnetism. By correlating these nodal centrality measures with students' scores on homework and exams, we find four centrality measures that correlate significantly with students' homework scores in all three courses: in-strength, out-strength, closeness centrality, and harmonic centrality. These correlations suggest that students who not only collaborate often, but also collaborate significantly with many different people tend to achieve higher grades. Centrality measures between simultaneous collaboration networks (analytical vs. numerical homework collaboration) composed of the same students also correlate with each other, suggesting that students' collaboration strategies remain relatively stable when presented with homework assignments targeting different skills. Additionally, we correlate centrality measures between collaboration networks from different courses and find that the four centrality measures with the strongest relationship to students' homework scores are also the most stable measures across networks involving different courses. Correlations of centrality measures with exam scores were generally smaller than the correlations with homework scores, though this finding varied across courses.Comment: 10 pages, 4 figures, submitted to Phys. Rev. PE

    Neurodynamic Evidence Supports a Forced-Excursion Model of Decision-Making under Speed/Accuracy Instructions

    Get PDF
    Evolutionary pressures suggest that choices should be optimised to maximise rewards, by appropriately trading speed for accuracy. This speed-accuracy tradeoff (SAT) is commonly explained by variation in just the baseline-to-boundary distance, i.e. excursion, of accumulation-to-bound models of perceptual decision making. However, neural evidence is not consistent with this explanation. A compelling account of speeded choice should explain both overt behaviour and the full range of associated brain signatures. Here, we reconcile seemingly contradictory behavioural and neural findings. In two variants of the same experiment, we triangulated upon the neural underpinnings of the SAT in the human brain using both EEG and TMS. We found that distinct neural signals, namely the ERP centroparietal positivity (CPP) and a smoothed motor-evoked potential (MEP) signal, which have both previously been shown to relate to decision-related accumulation, revealed qualitatively similar average neurodynamic profiles with only subtle differences between SAT conditions. These signals were then modelled from behaviour by either incorporating traditional boundary variation or utilising a forced excursion. These model variants are mathematically equivalent, in terms of their behavioural predictions, hence providing identical fits to correct and erroneous reaction time distributions. However, the forced-excursion version instantiates SAT via a more global change in parameters and implied neural activity, a process conceptually akin to, but mathematically distinct from, urgency. This variant better captured both ERP and MEP neural profiles, suggesting that the SAT may be implemented via neural gain modulation, and reconciling standard modelling approaches with human neural data

    Culex quinquefasciatus mosquitoes do not support replication of Zika virus

    Get PDF
    The rapid spread of Zika virus (ZIKV) in the Americas raised many questions about the role of Culex quinquefasciatus mosquitoes in transmission, in addition to the key role played by the vector Aedes aegypti. Here we analysed the competence of Cx. quinquefasciatus (with or without Wolbachia endosymbionts) for a ZIKV isolate. We also examined the induction of RNA interference pathways after viral challenge and the production of small virus-derived RNAs. We did not observe any infection nor such small virus-derived RNAs, regardless of the presence or absence of Wolbachia. Thus, Cx. quinquefasciatus does not support ZIKV replication and Wolbachia is not involved in producing this phenotype. In short, these mosquitoes are very unlikely to play a role in transmission of ZIKV

    Mitigating the risk of Zika virus contamination of raw materials and cell lines in the manufacture of biologicals

    Get PDF
    Ensuring the virological safety of biologicals is challenging due to the risk of viral contamination of raw materials and cell banks, and exposure during in-process handling to known and/or emerging viral pathogens. Viruses may contaminate raw materials and biologicals intended for human or veterinary use and remain undetected until appropriate testing measures are employed. The outbreak and expansive spread of the mosquito-borne flavivirus Zika virus (ZIKV) poses challenges to screening human- and animal -derived products used in the manufacture of biologicals. Here, we report the results of an in vitro study where detector cell lines were challenged with African and Asian lineages of ZIKV. We demonstrate that this pathogen is robustly detectable by in vitro assay, thereby providing assurance of detection of ZIKV, and in turn underpinning the robustness of in vitro virology assays in safety testing of biologicals

    Culex tarsalis is a competent vector species for Cache Valley virus

    Get PDF
    Background: Cache Valley virus (CVV) is a mosquito-borne orthobunyavirus endemic in North America. The virus is an important agricultural pathogen leading to abortion and embryonic lethality in ruminant species, especially sheep. The importance of CVV in human public health has recently increased because of the report of severe neurotropic diseases. However, mosquito species responsible for transmission of the virus to humans remain to be determined. In this study, vector competence of three Culex species mosquitoes of public health importance, Culex pipiens, Cx. tarsalis and Cx. quinquefasciatus, was determined in order to identify potential bridge vector species responsible for the transmission of CVV from viremic vertebrate hosts to humans. Results: Variation of susceptibility to CVV was observed among selected Culex species mosquitoes tested in this study. Per os infection resulted in the establishment of infection and dissemination in Culex tarsalis, whereas Cx. pipiens and Cx. quinquefasciatus were highly refractory to CVV. Detection of viral RNA in saliva collected from infected Cx. tarsalis provided evidence supporting its role as a competent vector. Conclusions: Our study provided further understanding of the transmission cycles of CVV and identifies Cx. tarsalis as a competent vector

    Beam Performance of Tracking Detectors with Industrially Produced GEM Foils

    Full text link
    Three Gas-Electron-Multiplier tracking detectors with an active area of 10 cm x 10 cm and a two-dimensional, laser-etched orthogonal strip readout have been tested extensively in particle beams at the Meson Test Beam Facility at Fermilab. These detectors used GEM foils produced by Tech-Etch, Inc. They showed an efficiency in excess of 95% and spatial resolution better than 70 um. The influence of the angle of incidence of particles on efficiency and spatial resolution was studied in detail.Comment: 8 pages, 9 figures, accepted by Nuclear Instruments and Methods in Physics Research
    corecore