85 research outputs found

    Targeting IRE1 with small molecules counteracts progression of atherosclerosis

    Get PDF
    Metaflammation, an atypical, metabolically induced, chronic lowgrade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ERresident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1ÎČ and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis

    Review of journal of cardiovascular magnetic resonance 2010

    Get PDF
    There were 75 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2010, which is a 34% increase in the number of articles since 2009. The quality of the submissions continues to increase, and the editors were delighted with the recent announcement of the JCMR Impact Factor of 4.33 which showed a 90% increase since last year. Our acceptance rate is approximately 30%, but has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. Last year for the first time, the Editors summarized the papers for the readership into broad areas of interest or theme, which we felt would be useful to practitioners of cardiovascular magnetic resonance (CMR) so that you could review areas of interest from the previous year in a single article in relation to each other and other recent JCMR articles [1]. This experiment proved very popular with a very high rate of downloading, and therefore we intend to continue this review annually. The papers are presented in themes and comparison is drawn with previously published JCMR papers to identify the continuity of thought and publication in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    MR fluoroscopy in vascular and cardiac interventions (review)

    Get PDF
    Vascular and cardiac disease remains a leading cause of morbidity and mortality in developed and emerging countries. Vascular and cardiac interventions require extensive fluoroscopic guidance to navigate endovascular catheters. X-ray fluoroscopy is considered the current modality for real time imaging. It provides excellent spatial and temporal resolution, but is limited by exposure of patients and staff to ionizing radiation, poor soft tissue characterization and lack of quantitative physiologic information. MR fluoroscopy has been introduced with substantial progress during the last decade. Clinical and experimental studies performed under MR fluoroscopy have indicated the suitability of this modality for: delivery of ASD closure, aortic valves, and endovascular stents (aortic, carotid, iliac, renal arteries, inferior vena cava). It aids in performing ablation, creation of hepatic shunts and local delivery of therapies. Development of more MR compatible equipment and devices will widen the applications of MR-guided procedures. At post-intervention, MR imaging aids in assessing the efficacy of therapies, success of interventions. It also provides information on vascular flow and cardiac morphology, function, perfusion and viability. MR fluoroscopy has the potential to form the basis for minimally invasive image–guided surgeries that offer improved patient management and cost effectiveness

    Validation of an automated assay for the measurement of cupric reducing antioxidant capacity in serum of dogs

    Get PDF
    BACKGROUND: The objective of the present study was to optimize and validate an automated method to assess the total antioxidant capacity (TAC) in serum of dogs using the cupric reducing antioxidant capacity (CUPRAC) methodology (TAC(c)) with bathocuproinedisulfonic acid disodium salt as chelating agent, evaluating also possible variations due to the use of two different automated analyzers. The method is based on the reduction of Cu(2+) into Cu(1+) by the action of the non-enzymatic antioxidants that are present in the sample. RESULTS: Imprecision was low in both apparatus utilized, and the results were linear across serial Trolox and canine serum samples dilutions. Lipids did not interfere with the assay; however, hemolysis increased the TAC(c) concentrations. When TAC(c) concentrations were determined in ten healthy (control) dogs and in twelve dogs with inflammatory bowel disease (IBD), dogs with IBD had lower TAC(c) concentrations when compared with the healthy dogs. CONCLUSIONS: The method validated in this paper is precise, simple, and fast and can be easily adapted to automated analyzers

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore