137 research outputs found

    The potential of different plant species for nickel accumulation

    Get PDF
    Contamination of the environment with toxic heavy metals is a mayor environmental problem. Aimed to find effective and economical attractive solutions for environment cleaning, scientists intensively evolve various phytoremediation techniques. Nickel is one of the essential micronutrients for plants, animals, and humans, but toxic at elevated concentrations. Also, it belongs to a group of heavy metals. In respect of the fact that Ni uptake relies upon plant species and that some of them show hyperaccumulation effects, the aim of our study was to analyse Ni concentration in certain plant species affected by Ni contamination of air and surface soil. Ni deposition in the air was below 60 mu g/m(2)/month, while Ni content in the soil was between 42 and 150 mu g/g. Average Ni content in plants ranged from 0. 1 to 5. 0 mu g/g. Regardless the analysed locality, the highest Ni (7.1 mu g/g) was obtained with the hogweed, whereas the lowest (4.5 mu g/g) with the vines. Ambrosia artemis folia and Taraxum officinale accumulated the greatest amounts of Ni (10. 72 and 10. 61 mu g/g, respectively). It may be concluded that the analysed plant species exhibit various phytoremediation potential for Ni under the same ecological conditions

    Dynamic Design of Systems with Semi-rigid Connections Based on Experimental Investigation of the Full Scale Structure

    Get PDF
    Semi-rigid connections in the construction permit mutual rotation of the nodes. Since such connections are quite common in constructions, especially in the precast ones, it is of interest to determine their dynamic characteristics that is the subject of this proposed paper. During our investigation full scale experiments have been carried out and experimentally determined dynamic characteristics have been compared with those obtained by use of the computational model. The real dynamic characteristics are determined and resonant frequencies of the basic modes in the horizontal and vertical directions, the forms of vibrations at these frequencies, as well as the corresponding coefficient of viscous damping. Testing has been done on the frame structure without facade walls. For the typical precast system "Minoma 1" with span of 12m, "Minoma 2" with span of 20m, and "Minoma 3" with span of 27m, dynamic characteristics: have been determined experimentally by use of forced harmonic excitation, free oscillations and ambient vibration. Experimentally and theoretically obtained values are in a relatively good agreement that is a good starting point for mathematical modeling

    Which egg features predict egg rejection responses in American robins? : replicating Rothstein's (1982) study

    Get PDF
    Rothstein (Behavioral Ecology and Sociobiology, 11, 1982, 229) was one of the first comprehensive studies to examine how different egg features influence egg rejection behaviors of avian brood parasite-hosts. The methods and conclusions of Rothstein (1982) laid the foundation for subsequent experimental brood parasitism studies over the past thirty years, but its results have never been evaluated with replication. Here, we partially replicated Rothstein's (1982) experiments using parallel artificial model egg treatments to simulate cowbird (Molothrus ater) parasitism in American robin (Turdus migratorius) nests. We compared our data with those of Rothstein (1982) and confirmed most of its original findings: (1) robins reject model eggs that differ from the appearance of a natural robin egg toward that of a natural cowbird egg in background color, size, and maculation; (2) rejection responses were best predicted by model egg background color; and (3) model eggs differing by two or more features from natural robin eggs were more likely to be rejected than model eggs differing by one feature alone. In contrast with Rothstein's (1982) conclusion that American robin egg recognition is not specifically tuned toward rejection of brown-headed cowbird eggs, we argue that our results and those of other recent studies of robin egg rejection suggest a discrimination bias toward rejection of cowbird eggs. Future work on egg recognition will benefit from utilizing a range of model eggs varying continuously in background color, maculation patterning, and size in combination with avian visual modeling, rather than using model eggs which vary only discretely

    Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae)

    Get PDF
    Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.United States National Science Foundation [0849186]; Society of Systematic Biologists; American Society of Plant Taxonomists; Duke University Graduate Schoolinfo:eu-repo/semantics/publishedVersio

    Which egg features predict egg rejection responses in American robins? Replicating Rothstein's (1982) study

    Get PDF
    Rothstein (Behavioral Ecology and Sociobiology, 11, 1982, 229) was one of the first comprehensive studies to examine how different egg features influence egg rejection behaviors of avian brood parasite-hosts. The methods and conclusions of Rothstein (1982) laid the foundation for subsequent experimental brood parasitism studies over the past thirty years, but its results have never been evaluated with replication. Here, we partially replicated Rothstein's (1982) experiments using parallel artificial model egg treatments to simulate cowbird (Molothrus ater) parasitism in American robin (Turdus migratorius) nests. We compared our data with those of Rothstein (1982) and confirmed most of its original findings: (1) robins reject model eggs that differ from the appearance of a natural robin egg toward that of a natural cowbird egg in background color, size, and maculation; (2) rejection responses were best predicted by model egg background color; and (3) model eggs differing by two or more features from natural robin eggs were more likely to be rejected than model eggs differing by one feature alone. In contrast with Rothstein's (1982) conclusion that American robin egg recognition is not specifically tuned toward rejection of brown-headed cowbird eggs, we argue that our results and those of other recent studies of robin egg rejection suggest a discrimination bias toward rejection of cowbird eggs. Future work on egg recognition will benefit from utilizing a range of model eggs varying continuously in background color, maculation patterning, and size in combination with avian visual modeling, rather than using model eggs which vary only discretely.we thank the Human Frontiers Science Program (to MEH) and the Harley Jones van Cleave Professorship in Host- Parasite Interactions at the University of Illinois, Urbana- Champaig

    Allelic diversity of S‑RNase alleles in diploid potato species

    Get PDF
    S-ribonucleases (S-RNases) control the pistil specificity of the self-incompatibility (SI) response in the genus Solanum and several other members of the Solanaceae. The nucleotide sequences of S-RNases corresponding to a large number of S-alleles or S-haplotypes have been characterised. However, surprisingly few S-RNase sequences are available for potato species. The identification of new S-alleles in diploid potato species is desirable as these stocks are important sources of traits such as biotic and abiotic resistance. S-RNase sequences are reported here from three distinct diploid types of potato: cultivated Solanum tuberosum Group Phureja, S. tuberosum Group Stenotomum, and the wild species Solanum okadae. Partial S-RNase sequences were obtained from pistil RNA by RT-PCR or 3’RACE (Rapid Amplification of cDNA Ends) using a degenerate primer. Full length sequences were obtained for two alleles by 5’RACE. Database searches with these sequences, identified sixteen S-RNases in total, all of which are novel. The sequence analysis revealed all the expected features of functional S-RNases. Phylogenetic analysis with selected published S-RNase and S-like-RNase sequences from the Solanaceae revealed extensive trans-generic evolution of the S-RNases and a clear distinction from S-like-RNases. Pollination tests were used to confirm the self-incompatibility status and cross-compatibility relationships of the S. okadae accessions. All the S. okadae accessions were found to be self-incompatible as expected with crosses amongst them exhibiting both cross-compatibility and semi-compatibility consistent with the S-genotypes determined from the S-RNase sequence data. The progeny analysis of four semi-compatible crosses examined by allele-specific PCR provided further confirmation that these are functional S-RNases

    Composition of bird nests is a species-specific characteristic

    Get PDF
    Bird nests represent an extended phenotype of individuals expressed during reproduction and so exhibit variability in composition, structure and function. Descriptions of nests based on qualitative observations suggest that there is interspecific variation in size and composition but there are very few species in which this has been confirmed. For these species, data of the amounts of different materials indicate that nest construction behaviour is plastic and affected by a variety of factors, such as prevailing temperature, geographic location, and availability of materials. The lack of data on nest composition is hampering our understanding of how nests achieve their various functions and how different species solve the problem of building a nest that will accommodate incubation and allow successful hatching of eggs. This study deconstructed nests of four species of the Turdidae, four species of the Muscicapidae, and six species of the Fringillidae and quantified the size of the nests and their composition. These data were used to test: (1) whether nest size correlated with adult bird mass; (2) whether it was possible to distinguish between species on the basis of their nest composition; and (3) whether, within a species, it was possible to distinguish between the cup lining and the rest of the nest based on composition. Most but not all nest dimensions correlated with bird mass. Principal component analysis revealed species differences based on nest composition and discriminant analysis could distinguish cup lining from the outer nest based on material composition. Intraspecific variation in composition varied among species and in general fewer types of material were found in the cup lining than the outer nest. These data provide insight into how nests are constructed by the different species and in conjunction with studies of the mechanical, thermal and hydrological properties of a nest, will begin to reveal how and why individual species select particular combinations of materials to build a nest

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Mutation Accumulation in a Selfing Population: Consequences of Different Mutation Rates between Selfers and Outcrossers

    Get PDF
    Currently existing theories predict that because deleterious mutations accumulate at a higher rate, selfing populations suffer from more intense genetic degradation relative to outcrossing populations. This prediction may not always be true when we consider a potential difference in deleterious mutation rate between selfers and outcrossers. By analyzing the evolutionary stability of selfing and outcrossing in an infinite population, we found that the genome-wide deleterious mutation rate would be lower in selfing than in outcrossing organisms. When this difference in mutation rate was included in simulations, we found that in a small population, mutations accumulated more slowly under selfing rather than outcrossing. This result suggests that under frequent and intense bottlenecks, a selfing population may have a lower risk of genetic extinction than an outcrossing population

    Renin-angiotensin-aldosterone system polymorphisms: a role or a hole in occurrence and long-term prognosis of acute myocardial infarction at young age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The renin-angiotensin-aldosterone system (RAAS) is involved in the cardiovascular homeostasis as shown by previous studies reporting a positive association between specific RAAS genotypes and an increased risk of myocardial infarction. Anyhow the prognostic role in a long-term follow-up has not been yet investigated.</p> <p>Aim of the study was to evaluate the influence of the most studied RAAS genetic Single Nucleotide Polymorphisms (SNPs) on the occurrence and the long-term prognosis of acute myocardial infarction (AMI) at young age in an Italian population.</p> <p>Methods</p> <p>The study population consisted of 201 patients and 201 controls, matched for age and sex (mean age 40 ± 4 years; 90.5% males). The most frequent conventional risk factors were smoke (p < 0.001), family history for coronary artery diseases (p < 0.001), hypercholesterolemia (p = 0.001) and hypertension (p = 0.002). The tested genetic polymorphisms were angiotensin converting enzyme insertion/deletion (ACE I/D), angiotensin II type 1 receptor (AGTR1) A1166C and aldosterone synthase (CYP11B2) C-344T. Considering a long-term follow-up (9 ± 4 years) we compared genetic polymorphisms of patients with and without events (cardiac death, myocardial infarction, revascularization procedures).</p> <p>Results</p> <p>We found a borderline significant association of occurrence of AMI with the ACE D/I polymorphism (DD genotype, 42% in cases vs 31% in controls; p = 0.056). DD genotype remained statistically involved in the incidence of AMI also after adjustment for clinical confounders.</p> <p>On the other hand, during the 9-year follow-up (65 events, including 13 deaths) we found a role concerning the AGTR1: the AC heterozygous resulted more represented in the event group (p = 0.016) even if not independent from clinical confounders. Anyhow the Kaplan-Meier event free curves seem to confirm the unfavourable role of this polymorphism.</p> <p>Conclusion</p> <p>Polymorphisms in RAAS genes can be important in the onset of a first AMI in young patients (ACE, CYP11B2 polymorphisms), but not in the disease progression after a long follow-up period. Larger collaborative studies are needed to confirm these results.</p
    corecore