101 research outputs found

    The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transposable elements (TEs) are a rapidly evolving fraction of the eukaryotic genomes and the main contributors to genome plasticity and divergence. Recently, occupation of the A- and D-genomes of allopolyploid wheat by specific TE families was demonstrated. Here, we investigated the impact of the well-represented family of <it>gypsy </it>LTR-retrotransposons, <it>Fatima</it>, on B-genome divergence of allopolyploid wheat using the fluorescent <it>in situ </it>hybridisation (FISH) method and phylogenetic analysis.</p> <p>Results</p> <p>FISH analysis of a BAC clone (BAC_2383A24) initially screened with Spelt1 repeats demonstrated its predominant localisation to chromosomes of the B-genome and its putative diploid progenitor <it>Aegilops speltoides </it>in hexaploid (genomic formula, BBAADD) and tetraploid (genomic formula, BBAA) wheats as well as their diploid progenitors. Analysis of the complete BAC_2383A24 nucleotide sequence (113 605 bp) demonstrated that it contains 55.6% TEs, 0.9% subtelomeric tandem repeats (Spelt1), and five genes. LTR retrotransposons are predominant, representing 50.7% of the total nucleotide sequence. Three elements of the <it>gypsy </it>LTR retrotransposon family <it>Fatima </it>make up 47.2% of all the LTR retrotransposons in this BAC. <it>In situ </it>hybridisation of the <it>Fatima</it>_2383A24-3 subclone suggests that individual representatives of the <it>Fatima </it>family contribute to the majority of the B-genome specific FISH pattern for BAC_2383A24. Phylogenetic analysis of various <it>Fatima </it>elements available from databases in combination with the data on their insertion dates demonstrated that the <it>Fatima </it>elements fall into several groups. One of these groups, containing <it>Fatima</it>_2383A24-3, is more specific to the B-genome and proliferated around 0.5-2.5 MYA, prior to allopolyploid wheat formation.</p> <p>Conclusion</p> <p>The B-genome specificity of the <it>gypsy</it>-like <it>Fatima</it>, as determined by FISH, is explained to a great degree by the appearance of a genome-specific element within this family for <it>Ae. speltoides</it>. Moreover, its proliferation mainly occurred in this diploid species before it entered into allopolyploidy.</p> <p>Most likely, this scenario of emergence and proliferation of the genome-specific variants of retroelements, mainly in the diploid species, is characteristic of the evolution of all three genomes of hexaploid wheat.</p

    Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys

    Get PDF
    Two different precipitate hardening aluminium alloys processed by friction stir welding were investigated. The microstructure and the hardness of the as delivered materials were compared to that of the weld nugget. Transmission electron microscopy observations combined with three-dimensional atom probe analyses clearly show that \beta;" precipitates dissolved in the nugget of the Al-Mg-Si giving rise to some supersaturated solid solution. It is shown that the dramatic softening of the weld could be partly recovered by post-welding ageing treatments. In the Al-Mg-Sc alloy, Al3Sc precipitate size and density are unchanged in the nugget comparing to the base metal. These precipitates strongly reduce the boundary mobility of recrystallised grains, leading to a grain size in the nugget much smaller than in the Al-Mg-Si alloy. Both coherent and incoherent precipitates were detected. This feature may indicate that a combination of continuous and discontinuous recrystallisation occurred in the weld nugget

    Isolation and sequence analysis of the wheat B genome subtelomeric DNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and <it>Aegilops </it>species from the section <it>Sitopsis</it>.</p> <p>Results</p> <p>The BAC library from <it>Triticum aestivum </it>cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by <it>in situ </it>hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119 737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon <it>Caspar </it>covers 11 666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The <it>in situ </it>hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL.</p> <p>Conclusion</p> <p>Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time that Spelt52 sequences were involved in the evolution of terminal regions of common wheat chromosomes. Our research provides new insights into the microcollinearity in the terminal regions of wheat chromosomes 4BL and rice chromosome 3S.</p

    Use of environmental isotopes to assess the sustainability of intensively exploited aquifer systems (2012‐2015)

    Get PDF
    Intensive exploitation of groundwater over longer period has led, in many important aquifers, to marked lowering of water tables, increasing exploitation costs, and often, to a progressive deterioration of water quality. Concentrated pumping may also alter flow patterns permanently with the risk of migration of pollutants into aquifers from the surrounding aquifers or surface water bodies due to lack of physical protection to prevent them. Isotope hydrology tools have proven to be very useful in assessing groundwater hydrology, addressing aspects related to recharge processes, delineation of flow patterns, water quality issues and interactions with other water bodies; this unique information can be further used to evaluate long term aquifer sustainability. The objective of the Coordinated Research Project F33019 is to develop and review approaches and methodologies, mostly based on the combined use of conventional hydrogeological techniques and environmental isotopes, to assess the response of groundwater systems to intensive exploitation and groundwater availability. Access to new dating tools and approaches for groundwater dating covering different time scales offers the possibility to evaluate changes in groundwater dynamics and flow patterns, providing key data to predict the evolution of aquifers and their sustainability as major sources of water. The CRP aims to assess the performance of these new tools and approaches and the possible adoption of these methods by water management experts

    The Nature of the Dietary Protein Impacts the Tissue-to-Diet 15N Discrimination Factors in Laboratory Rats

    Get PDF
    Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are 15N-enriched relative to their dietary nitrogen sources and this 15N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ15N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ15N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally 15N-enriched relative to their non-protein fraction and to the diet (Δ15N>0), with large variations in the Δ15N between tissue proteins. Δ15N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ15N differences between diets differed between tissues. Both between-tissue and between-diet Δ15N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ15N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ15N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source
    corecore