591 research outputs found

    Ranching in Northwestern South Dakota

    Get PDF

    Feasibility of Infectious Prion Digestion Using Mild Conditions and Commercial Subtilisin

    Get PDF
    Two serine protease enzymes, subtilisin 309 and subtilisin 309-v,were used to digest brain homogenates containing high levels of prion infectivity using mildly alkaline conditions to investigate prion decontamination methods. To establish that PrPres infectivity was eliminated, we utilized the Rocky Mountain Laboratory (RML) mouse-adapted scrapie model system for bioassay. Only one digestion condition (subtilisin 309 at 138mAU/ml, 55 ā—¦C and 14 h digestion time pH 7.9) was considered to be highly relevant statistically (P \u3c 0.001) compared to control, with 52% of challenged mice surviving until the end of the study period. In contrast, treatment of PrPres by autoclaving at 134 ā—¦C or treatment with hypochlorite at a concentration of 20,000ppm completely protected mice from prionosis. Further, in vitro assays suggest that potential proteolytic based PrPres decontamination methods must use high enzyme concentration, pH values \u3e9.0, and elevated temperatures to be a safely efficacious, thereby limiting applicability on delicate surgical instruments and use in the environment

    Neurochemical Aftermath of Repetitive Mild Traumatic Brain Injury

    Get PDF
    IMPORTANCE: Evidence is accumulating that repeated mild traumatic brain injury (mTBI) incidents can lead to persistent, long-term debilitating symptoms and in some cases a progressive neurodegenerative condition referred to as chronic traumatic encephalopathy. However, to our knowledge, there are no objective tools to examine to which degree persistent symptoms after mTBI are caused by neuronal injury. OBJECTIVE: To determine whether persistent symptoms after mTBI are associated with brain injury as evaluated by cerebrospinal fluid biochemical markers for axonal damage and other aspects of central nervous system injury. DESIGN, SETTINGS, AND PARTICIPANTS: A multicenter cross-sectional study involving professional Swedish ice hockey players who have had repeated mTBI, had postconcussion symptoms for more than 3 months, and fulfilled the criteria for postconcussion syndrome (PCS) according to the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) matched with neurologically healthy control individuals. The participants were enrolled between January 2014 and February 2016. The players were also assessed with Rivermead Post Concussion Symptoms Questionnaire and magnetic resonance imaging. MAIN OUTCOMES AND MEASURES: Neurofilament light protein, total tau, glial fibrillary acidic protein, amyloid Ī², phosphorylated tau, and neurogranin concentrations in cerebrospinal fluid. RESULTS: A total of 31 participants (16 men with PCS; median age, 31 years; range, 22-53 years; and 15 control individuals [11 men and 4 women]; median age, 25 years; range, 21-35 years) were assessed. Of 16 players with PCS, 9 had PCS symptoms for more than 1 year, while the remaining 7 returned to play within a year. Neurofilament light proteins were significantly increased in players with PCS for more than 1 year (median, 410 pg/mL; range, 230-1440 pg/mL) compared with players whose PCS resolved within 1 year (median, 210 pg/mL; range, 140-460 pg/mL) as well as control individuals (median 238 pg/mL, range 128-526 pg/mL; Pā€‰=ā€‰.04 and Pā€‰=ā€‰.02, respectively). Furthermore, neurofilament light protein concentrations correlated with Rivermead Post Concussion Symptoms Questionnaire scores and lifetime concussion events (Ļā€‰=ā€‰0.58, Pā€‰=ā€‰.02 and Ļā€‰=ā€‰0.52, Pā€‰=ā€‰.04, respectively). Overall, players with PCS had significantly lower cerebrospinal fluid amyloid-Ī² levels compared with control individuals (median, 1094 pg/mL; range, 845-1305 pg/mL; Pā€‰=ā€‰.05). CONCLUSIONS AND RELEVANCE: Increased cerebrospinal fluid neurofilament light proteins and reduced amyloid Ī² were observed in patients with PCS, suggestive of axonal white matter injury and amyloid deposition. Measurement of these biomarkers may be an objective tool to assess the degree of central nervous system injury in individuals with PCS and to distinguish individuals who are at risk of developing chronic traumatic encephalopathy

    Interactions in vivo between the Vif protein of HIV-1 and the precursor (Pr55GAG) of the virion nucleocapsid proteins

    Get PDF
    The abnormality of viral core structure seen in vif-defective HIV-1 grown in PBMCs has suggested a role for Vif in viral morphogenesis. Using an in vivo mammalian two-hybrid assay, the interaction between Vif and the precursor (Pr55GAG) of the virion nucleocapsid proteins has been analysed. This revealed the amino-terminal (aa 1ā€“22) and central (aa 70ā€“100) regions of Vif to be essential for its interaction with Pr55GAG, but deletion of the carboxy-terminal (aa 158ā€“192) region of the protein had only a minor effect on its interaction. Initial deletion studies carried out on Pr55GAG showed that a 35-amino-acid region of the protein bridging the MA(p17)ā€“CA(p24) junction was essential for its ability to interact with Vif. Site-directed mutagenesis of a conserved tryptophan (Trp21) near the amino terminus of Vif showed it to be important for the interaction with Pr55GAG. By contrast, mutagenesis of the highly conserved YLAL residues forming part of the BC-box motif, shown to be important in Vif promoting degradation of APOBEC3G/3F, had little or no effect on the Vifā€“Pr55GAG interaction

    Differential Expression of Myrosinase Gene Families

    Full text link

    ā€˜O sibling, where art thou?ā€™ ā€“ a review of avian sibling recognition with respect to the mammalian literature

    Get PDF
    Avian literature on sibling recognition is rare compared to that developed by mammalian researchers. We compare avian and mammalian research on sibling recognition to identify why avian work is rare, how approaches differ and what avian and mammalian researchers can learn from each other. Three factors: (1) biological differences between birds and mammals, (2) conceptual biases and (3) practical constraints, appear to influence our current understanding. Avian research focuses on colonial species because sibling recognition is considered adaptive where ā€˜mixing potentialā€™ of dependent young is high; research on a wider range of species, breeding systems and ecological conditions is now needed. Studies of acoustic recognition cues dominate avian literature; other types of cues (e.g. visual, olfactory) deserve further attention. The effect of gender on avian sibling recognition has yet to be investigated; mammalian work shows that gender can have important influences. Most importantly, many researchers assume that birds recognise siblings through ā€˜direct familiarisationā€™ (commonly known as associative learning or familiarity); future experiments should also incorporate tests for ā€˜indirect familiarisationā€™ (commonly known as phenotype matching). If direct familiarisation proves crucial, avian research should investigate how periods of separation influence sibling discrimination. Mammalian researchers typically interpret sibling recognition in broad functional terms (nepotism, optimal outbreeding); some avian researchers more successfully identify specific and testable adaptive explanations, with greater relevance to natural contexts. We end by reporting exciting discoveries from recent studies of avian sibling recognition that inspire further interest in this topic

    Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser

    Full text link
    Gisbert Winnewisser's astronomical career was practically coextensive with the whole development of molecular radio astronomy. Here I would like to pick out a few of his many contributions, which I, personally, find particularly interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter Astronomy Group. To appear in the Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies" eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer: Berlin

    Alzheimer-associated cerebrospinal fluid fragments of neurogranin are generated by Calpain-1 and prolyl endopeptidase

    Get PDF
    BACKGROUND: Neurogranin (Ng) is a small 7.6 kDa postsynaptic protein that has been detected at elevated concentrations in cerebrospinal fluid (CSF) of patients with Alzheimerā€™s disease (AD), both as a full-length molecule and as fragments from its C-terminal half. Ng is involved in postsynaptic calcium (Ca) signal transduction and memory formation via binding to calmodulin in a Ca-dependent manner. The mechanism of Ng secretion from neurons to CSF is currently unknown, but enzymatic cleavage of Ng may be of relevance. Therefore, the aim of the study was to identify the enzymes responsible for the cleavage of Ng, yielding the Ng fragment pattern of C-terminal fragments detectable and increased in CSF of AD patients. METHODS: Fluorigenic quenched FRET probes containing sequences of Ng were utilized to identify Ng cleaving activities among enzymes known to have increased activity in AD and in chromatographically fractionated mouse brain extracts. RESULTS: Human Calpain-1 and prolyl endopeptidase were identified as the candidate enzymes involved in the formation of endogenous Ng peptides present in CSF, cleaving mainly in the central region of Ng, and between amino acids 75_76 in the Ng sequence, respectively. The cleavage by Calpain-1 affects the IQ domain of Ng, which may deactivate or change the function of Ng in Ca2+/calmodulin -dependent signaling for synaptic plasticity. While shorter Ng fragments were readily cleaved in vitro by prolyl endopeptidase, the efficiency of cleavage on larger Ng fragments was much lower. CONCLUSIONS: Calpain-1 and prolyl endopeptidase cleave Ng in the IQ domain and near the C-terminus, respectively, yielding specific fragments of Ng in CSF. These fragments may give clues to the roles of increased activities of these enzymes in the pathophysiology of AD, and provide possible targets for pharmacologic intervention

    Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence

    Get PDF
    Background Cancers arise from multiple acquired mutations, which presumably occur over many years. Early stages in cancer development might be present years before cancers become clinically apparent. Methods We analyzed data from whole-exome sequencing of DNA in peripheral-blood cells from 12,380 persons, unselected for cancer or hematologic phenotypes. We identified somatic mutations on the basis of unusual allelic fractions. We used data from Swedish national patient registers to follow health outcomes for 2 to 7 years after DNA sampling. Results Clonal hematopoiesis with somatic mutations was observed in 10% of persons older than 65 years of age but in only 1% of those younger than 50 years of age. Detectable clonal expansions most frequently involved somatic mutations in three genes (DNMT3A, ASXL1, and TET2) that have previously been implicated in hematologic cancers. Clonal hematopoiesis was a strong risk factor for subsequent hematologic cancer (hazard ratio, 12.9; 95% confidence interval, 5.8 to 28.7). Approximately 42% of hematologic cancers in this cohort arose in persons who had clonality at the time of DNA sampling, more than 6 months before a first diagnosis of cancer. Analysis of bone marrowā€“biopsy specimens obtained from two patients at the time of diagnosis of acute myeloid leukemia revealed that their cancers arose from the earlier clones. Conclusions Clonal hematopoiesis with somatic mutations is readily detected by means of DNA sequencing, is increasingly common as people age, and is associated with increased risks of hematologic cancer and death. A subset of the genes that are mutated in patients with myeloid cancers is frequently mutated in apparently healthy persons; these mutations may represent characteristic early events in the development of hematologic cancers. (Funded by the National Human Genome Research Institute and others.)National Human Genome Research Institute (U.S.) (Grant U54 HG003067)National Human Genome Research Institute (U.S.) (Grant R01 HG006855)Stanley Center for Psychiatric ResearchAlexander and Margaret Stewart TrustNational Institute of Mental Health (U.S.) (Grant R01 MH 077139)National Institute of Mental Health (U.S.) (Grant RC2 MH089905)Sylvan C. Herman Foundatio
    • ā€¦
    corecore