6,848 research outputs found
Quantum cascade laser light propagation through hollow silica waveguides
In this paper, the transmission characteristics of hollow silica waveguides with bore diameters of 300 and 1000 μm are investigated using a 7.8-μm quantum cascade laser system. We show that the bore diameter, coiling and launch conditions have an impact on the number of supported modes in the waveguide. Experimental verification of theoretical predictions is achieved using a thermal imaging camera to monitor output intensity distributions from waveguides under a range of conditions. The thermal imaging camera allowed for more detailed images than could be obtained with a conventionally used beam profiler. The results show that quasi-single-mode transmission is achievable under certain conditions although guided single-mode transmission in coiled waveguides requires a smaller bore diameter-to-wavelength ratio than is currently available. Assessment of mode population is made by investigating the spatial frequency content of images recorded at the waveguide output using Fourier transform techniques
Design and analysis issues of integrated control systems for high-speed civil transports
A study was conducted to identify, rank, and define development plans for the critical guidance and control design and analysis issues as related to economically viable and environmentally acceptable high-speed civil transport. The issues were identified in a multistep process. First, pertinent literature on supersonic cruise aircraft was reviewed, and experts were consulted to establish the fundamental characteristics and problems inherent to supersonic cruise aircraft. Next, the advanced technologies and strategies being pursued for the high-speed civil transport were considered to determine any additional unique control problems the transport may have. Finally, existing technologies and methods were examined to determine their capabilities for the design and analysis of high-speed civil transport control systems and to identify the shortcomings and issues. Three priority levels - mandatory, highly beneficial, and desirable - were established. Within each of these levels, the issues were further ranked. Technology development plans for each issue were defined. Each plan contains a task breakdown and schedule
Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures
The combination of large thickness ( m), large--area uniformity (75
mm diameter), high growth rate (up to 0.4 m/min) in assemblies of
complex--shaped nanowires on lithographically defined patterns has been
achieved for the first time. The nanoscale and the microscale have thus been
blended together in sculptured thin films with transverse architectures.
SiO () nanowires were grown by electron--beam evaporation onto
silicon substrates both with and without photoresist lines (1--D arrays) and
checkerboard (2--D arrays) patterns. Atomic self--shadowing due to
oblique--angle deposition enables the nanowires to grow continuously, to change
direction abruptly, and to maintain constant cross--sectional diameter. The
selective growth of nanowire assemblies on the top surfaces of both 1--D and
2--D arrays can be understood and predicted using simple geometrical shadowing
equations.Comment: 17 pages, 9 figure
The role of mutation rate variation and genetic diversity in the architecture of human disease
Background
We have investigated the role that the mutation rate and the structure of genetic variation at a locus play in determining whether a gene is involved in disease. We predict that the mutation rate and its genetic diversity should be higher in genes associated with disease, unless all genes that could cause disease have already been identified.
Results
Consistent with our predictions we find that genes associated with Mendelian and complex disease are substantially longer than non-disease genes. However, we find that both Mendelian and complex disease genes are found in regions of the genome with relatively low mutation rates, as inferred from intron divergence between humans and chimpanzees, and they are predicted to have similar rates of non-synonymous mutation as other genes. Finally, we find that disease genes are in regions of significantly elevated genetic diversity, even when variation in the rate of mutation is controlled for. The effect is small nevertheless.
Conclusions
Our results suggest that gene length contributes to whether a gene is associated with disease. However, the mutation rate and the genetic architecture of the locus appear to play only a minor role in determining whether a gene is associated with disease
Tan(beta) enhanced Yukawa couplings for supersymmetric Higgs singlets at one loop
Extensions of the MSSM generically feature gauge singlet Higgs bosons. These
singlet Higgs bosons have tan(beta)-enhanced Yukawa couplings to down-type
quarks and leptons at the one-loop level. We present an effective Lagrangian
incorporating these Yukawa couplings and use it to study their effect on
singlet Higgs boson phenomenology within both the mnSSM and NMSSM. It is found
that the loop-induced couplings represent an appreciable effect for the singlet
pseudoscalar in particular, and may dominate its decay modes in some regions of
parameter space.Comment: Submitted for the SUSY07 proceedings, 4 pages, 5 figure
Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells.
Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H)-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell-cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no [279337/DOS]. In addition, the group research was supported by grants from the Engineering and Physical Sciences Research Council, Biotechnology and Biological Sciences Research Council, Medical Research Council and Welcome Trust. Y.S.T. was supported by an A*STAR Graduate Scholarship
The Mersey Estuary : sediment geochemistry
This report describes a study of the geochemistry of
the Mersey estuary carried out between April 2000 and
December 2002. The study was the first in a new programme
of surveys of the geochemistry of major British estuaries
aimed at enhancing our knowledge and understanding of the
distribution of contaminants in estuarine sediments.
The report first summarises the physical setting, historical
development, geology, hydrography and bathymetry of the
Mersey estuary and its catchment. Details of the sampling
and analytical programmes are then given followed by a
discussion of the sedimentology and geochemistry. The
chemistry of the water column and suspended particulate
matter have not been studied, the chief concern being with
the geochemistry of the surface and near-surface sediments
of the Mersey estuary and an examination of their likely
sources and present state of contamination
Analysis of Strongyle Egg Shedding Consistency in Horses and Factors That Affect It
Strongyle egg shedding consistency in horses and factors affecting consistency were investigated. Fecal samples were collected from 26 equine populations over one grazing season. Samples were collected on four “screening” occasions (S1–S4) and fecal egg count (FEC) performed (to 1 egg per gram [epg] egg detection limit). On each screening occasion, FEC was assigned an egg shedding category: 1 (<50 epg) to 7 (>500 epg); and a treatment category: <200 epg (no treatment) or ≥200 epg (treatment). Rank changes in shedding and treatment categories between S1 and subsequent screening occasions were calculated. Factors affecting the likelihood of an individual changing shedding or treatment category were assessed using multivariable logistic regression of FEC data from horses that had not received anthelmintic during the study. In total, 573 horses were sampled at S1, 468 at S2, 417 at S3, and 83 at S4. Results showed that between S1 and S4, 73.5% (61/83) horses remained in the same egg shedding category and 94.0% (78/83) in the same treatment category. For horses that did not receive anthelmintic (n = 304), 90.4% (225/304) remained in the same shedding category. Horses under 5 years old were more likely to change egg shedding (odds ratio [OR] = 3.3; 95% confidence interval [CI]: 1.22–8.46) and treatment (OR = 2.8; 95% CI: 1.1–6.3) categories compared to older horses. These results suggest a high level of consistency in strongyle egg shedding in individuals within one season, and withholding anthelmintics from horses with negative/low (i.e., <50 epg) FEC does not appear to lead to significant increases in egg shedding
Dispelling the myths of online education: learning via the information superhighway
There continues to be a perception that online education is inferior to traditional education. In the U.S. online learning is more developed than in the U.K. This paper provides insights into a U.S. provision and takes a close look at what are perceived as weaknesses of on line learning and argues that these are not necessarily inherent weaknesses of this form of educational delivery. Then, results of two major studies, undertaken in the U.S. are provided comparing the effectiveness of online education to traditional education as perceived by current MBA students and past graduates. Results of these studies suggest that students of MBA modules and MBA graduates perceive the quality and effectiveness of online education to be similar to, if not higher than, the quality and effectiveness of traditional modules and programmes
The Generalized Jacobi Equation
The Jacobi equation in pseudo-Riemannian geometry determines the linearized
geodesic flow. The linearization ignores the relative velocity of the
geodesics. The generalized Jacobi equation takes the relative velocity into
account; that is, when the geodesics are neighboring but their relative
velocity is arbitrary the corresponding geodesic deviation equation is the
generalized Jacobi equation. The Hamiltonian structure of this nonlinear
equation is analyzed in this paper. The tidal accelerations for test particles
in the field of a plane gravitational wave and the exterior field of a rotating
mass are investigated. In the latter case, the existence of an attractor of
uniform relative radial motion with speed is pointed
out. The astrophysical implications of this result for the terminal speed of a
relativistic jet is briefly explored.Comment: LaTeX file, 4 PS figures, 28 pages, revised version, accepted for
publication in Classical and Quantum Gravit
- …
