360 research outputs found

    A Practical Algorithm with Performance Guarantees for the Art Gallery Problem

    Get PDF
    Given a closed simple polygon P, we say two points p,q see each other if the segment seg(p,q) is fully contained in P. The art gallery problem seeks a minimum size set G ? P of guards that sees P completely. The only currently correct algorithm to solve the art gallery problem exactly uses algebraic methods. As the art gallery problem is ? ?-complete, it seems unlikely to avoid algebraic methods, for any exact algorithm, without additional assumptions. In this paper, we introduce the notion of vision-stability. In order to describe vision-stability consider an enhanced guard that can see "around the corner" by an angle of ? or a diminished guard whose vision is by an angle of ? "blocked" by reflex vertices. A polygon P has vision-stability ? if the optimal number of enhanced guards to guard P is the same as the optimal number of diminished guards to guard P. We will argue that most relevant polygons are vision-stable. We describe a one-shot vision-stable algorithm that computes an optimal guard set for vision-stable polygons using polynomial time and solving one integer program. It guarantees to find the optimal solution for every vision-stable polygon. We implemented an iterative vision-stable algorithm and show its practical performance is slower, but comparable with other state-of-the-art algorithms. The practical implementation can be found at: https://github.com/simonheng/AGPIterative. Our iterative algorithm is inspired and follows closely the one-shot algorithm. It delays several steps and only computes them when deemed necessary. Given a chord c of a polygon, we denote by n(c) the number of vertices visible from c. The chord-visibility width (cw(P)) of a polygon is the maximum n(c) over all possible chords c. The set of vision-stable polygons admit an FPT algorithm when parameterized by the chord-visibility width. Furthermore, the one-shot algorithm runs in FPT time when parameterized by the number of reflex vertices

    An Algorithm for Strategic Continuation or Restriction of Asthma Medication Prior to Exercise Challenge Testing in Childhood Exercise Induced Bronchoconstriction

    Get PDF
    Exercise induced bronchial (EIB) constriction is a common and highly specific feature of pediatric asthma and should be diagnosed with an exercise challenge test (ECT). The impact of EIB in asthmatic children's daily lives is immense, considering the effects on both physical and psychosocial development. Monitoring childhood asthma by ECT's can provide insight into daily life disease burden and the control of asthma. Current guidelines for bronchoprovocation tests restrict both the use of reliever and maintenance asthma medication before an exercise challenge to prevent false-negative testing, as both have significant acute bronchoprotective properties. However, restricting maintenance medication before an ECT may be less appropiate to evaluate EIB symptoms in daily life when a diagnosis of asthma is well established. Rigorous of maintenance medication before an ECT according to guidelines may lead to overestimation of the real, daily life asthma burden and lead to an inappropiate step-up in therapy. The protection against EIB offered by the combined acute and chronic bronchoprotective effects of maintenance medication can be properly assessed whilst maintaining them. This may aid in achieving the goal of unrestricted participation of children in daily play and sports activities with their peers without escalation of therapy. When considering a step down in medication, a strategic wash-out of maintenance medication before an ECT aids in providing objective support of potential discontinuation of maintenance medication

    Sustainability impact assessment of forest management alternatives in Europe: an introductory background and framework

    Get PDF
    Adaptation of forest management practices in the context of rapid climatic and socioeconomic changes is a global concern. Stakeholders in the forest-based sector as well as policy makers need improved methods and tools to assess potential impacts of changes in management on sustainability indicators. In this special feature, we introduce a methodological framework for classification of forest management approaches in European forestry and explore how changes in forest management might affect the delivery of various ecosystem goods and services and appropriate sustainability indicators over time and space from local to continental scales. The complementary papers in this special feature explore different aspects of sustainability and risks in representative European forest systems as affected by forest management. We show how a common framework plus supporting growth models and indicators can be used to examine the effects of management on ecosystem services and so provide a first step toward the development of a more integrated approach for strategic forest planning and sustainable use of forest ecosystems

    a pooled analysis of four longitudinal aging cohorts

    Get PDF
    © The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition.BACKGROUND: Dietary protein may slow the decline in muscle mass and function with aging, making it a sensible candidate to prevent or modulate disability progression. At present, studies providing reliable estimates of the association between protein intake and physical function, and its interaction with physical activity (PA), in community-dwelling older adults are lacking. OBJECTIVES: We investigated the longitudinal relation between protein intake and physical function, and the interaction with PA. METHODS: We undertook a pooled analysis of individual participant data from cohorts in the PROMISS (PRevention Of Malnutrition In Senior Subjects in the European Union) consortium (the Health Aging and Body Composition Study, Quebec Longitudinal Study on Nutrition and Successful Aging, Longitudinal Aging Study Amsterdam, and Newcastle 85+) in which 5725 community-dwelling older adults were followed up to 8.5 y. The relation between protein intake and walking speed was determined using joint models (linear mixed-effects and Cox proportional hazards models) and the relation with mobility limitation was investigated using multistate models. RESULTS: Higher protein intake was modestly protective of decline in walking speed in a dose-dependent manner [e.g., protein intake ≥1.2 compared with 0.8 g/kg adjusted body weight (aBW)/d: β = 0.024, 95% CI: 0.009, 0.032 SD/y], with no clear indication of interaction with PA. Participants with protein intake ≥0.8 g/kg aBW/d had also a lower likelihood of incident mobility limitation, which was observed for each level of PA. This association seemed to be dose-dependent for difficulty walking but not for difficulty climbing stairs. No associations between protein intake and other mobility limitations transitions were observed. CONCLUSIONS: Higher daily protein intake can reduce physical function decline not only in older adults with protein intake below the current RDA of 0.8 g/kg BW/d, but also in those with a protein intake that is already considered sufficient. This dose-dependent association was observed for each level of PA, suggesting no clear synergistic association between protein intake and PA in relation to physical function.publishersversionpublishe

    Classification of forest management approaches: a new conceptual framework and its applicability to European forestry

    Get PDF
    The choice between different forest management practices is a crucial step in short, medium, and long-term decision making in forestry and when setting up measures to support a regional or national forest policy. Some conditions such as biogeographically determined site factors, exposure to major disturbances, and societal demands are predetermined, whereas operational processes such as species selection, site preparation, planting, tending, or thinning can be altered by management. In principle, the concept of a forest management approach provides a framework for decision making, including a range of silvicultural operations that influence the development of a stand or group of trees over time. These operations vary among silvicultural systems and can be formulated as a set of basic principles. Consequently, forest management approaches are essentially defined by coherent sets of forest operation processes at a stand level. Five ideal forest management approaches (FMAs) representing a gradient of management intensity are described using specific sets of basic principles that enable comparison across European forests. Each approach is illustrated by a regional European case study. The observed regional variations resulting from changing species composition, stand density, age structure, stand edges, and site conditions can be interpreted using the FMA framework. Despite being arranged along an intensity gradient, the forest management approaches are not considered to be mutually exclusive, as the range of options allows for greater freedom in selecting potential silvicultural operations. As derived goods and services are clearly affected, the five forest management approaches have implications for sustainability. Thus, management objectives can influence the balance between the economic, ecological, and social dimensions of sustainability. The utility of this framework is further demonstrated through the different contributions to this special issue

    The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.

    Get PDF
    The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere

    53BP1 can limit sister-chromatid rupture and rearrangements driven by a distinct ultrafine DNA bridging-breakage process

    Get PDF
    Chromosome missegregation acts as one of the driving forces for chromosome instability and cancer development. Here, we find that in human cancer cells, HeLa and U2OS, depletion of 53BP1 (p53-binding protein 1) exacerbates chromosome non-disjunction resulting from a new type of sister-chromatid intertwinement, which is distinct from FANCD2-associated ultrafine DNA bridges (UFBs) induced by replication stress. Importantly, the sister DNA intertwinements trigger gross chromosomal rearrangements through a distinct process, named sister-chromatid rupture and bridging. In contrast to conventional anaphase bridge-breakage models, we demonstrate that chromatid axes of the intertwined sister-chromatids rupture prior to the breakage of the DNA bridges. Consequently, the ruptured sister arms remain tethered and cause signature chromosome rearrangements, including whole-arm (Robertsonian-like) translocation/deletion and isochromosome formation. Therefore, our study reveals a hitherto unreported chromatid damage phenomenon mediated by sister DNA intertwinements that may help to explain the development of complex karyotypes in tumour cells
    corecore