44 research outputs found

    Continuous variable entanglement distillation of Non-Gaussian Mixed States

    Get PDF
    Many different quantum information communication protocols such as teleportation, dense coding and entanglement based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is however hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order non-linearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels

    Assessing the Polarization of a Quantum Field from Stokes Fluctuation

    Get PDF
    We propose an operational degree of polarization in terms of the variance of the projected Stokes vector minimized over all the directions of the Poincar\'e sphere. We examine the properties of this degree and show that some problems associated with the standard definition are avoided. The new degree of polarization is experimentally determined using two examples: a bright squeezed state and a quadrature squeezed vacuum.Comment: 4 pages, 2 figures. Comments welcome

    Quantum reconstruction of an intense polarization squeezed optical state

    Get PDF
    We perform a reconstruction of the polarization sector of the density matrix of an intense polarization squeezed beam starting from a complete set of Stokes measurements. By using an appropriate quasidistribution, we map this onto the Poincare space providing a full quantum mechanical characterization of the measured polarization state.Comment: 4 pages, 4 eps color figure

    A pulsed source of continuous variable polarization entanglement

    Full text link
    We have experimentally demonstrated polarization entanglement using continuous variables in an ultra-short pulsed laser system at telecommunication wavelengths. Exploiting the Kerr-nonlinearity of a glass fibre we generated a polarization squeezed pulse with S2 the only non-zero Stokes parameter thus S1 and S3 being the conjugate pair. Polarization entanglement was generated by interference of the polarization squeezed field with a vacuum on a 50:50 beam splitter. The two resultant beams exhibit strong quantum noise correlations in S1 and S3. The sum noise signal of S3 was at the respective shot noise level and the difference noise signal of S1 fell 2.9dB below this value

    Many-body quantum dynamics of polarisation squeezing in optical fibre

    Get PDF
    We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fibre, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibres. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.Comment: 4 pages, 4 figure

    Experimental entanglement distillation of mesoscopic quantum states

    Full text link
    The distribution of entangled states between distant parties in an optical network is crucial for the successful implementation of various quantum communication protocols such as quantum cryptography, teleportation and dense coding [1-3]. However, owing to the unavoidable loss in any real optical channel, the distribution of loss-intolerant entangled states is inevitably inflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, which is the process of extracting a small set of highly entangled states from a large set of less entangled states, can be used [4-14]. Here we report on the mesoscopic distillation of deterministically prepared entangled light pulses that have undergone non-Gaussian noise. The entangled light pulses [15-17] are sent through a lossy channel, where the transmission is varying in time similarly to light propagation in the atmosphere. By employing linear optical components and global classical communication, the entanglement is probabilistically increased.Comment: 13 pages, 4 figures. It's the first submitted version to the Nature Physics. The final version is already published on Nature Physics vol.4, No.12, 919 - 923 (2008

    Teleportation of continuous variable polarisation states

    Get PDF
    This paper discusses methods for the optical teleportation of continuous variable polarisation states. We show that using two pairs of entangled beams, generated using four squeezed beams, perfect teleportation of optical polarisation states can be performed. Restricting ourselves to 3 squeezed beams, we demonstrate that polarisation state teleportation can still exceed the classical limit. The 3-squeezer schemes involve either the use of quantum non-demolition measurement or biased entanglement generated from a single squeezed beam. We analyse the efficacies of these schemes in terms of fidelity, signal transfer coefficients and quantum correlations

    Preparation of distilled and purified continuous variable entangled states

    Full text link
    The distribution of entangled states of light over long distances is a major challenge in the field of quantum information. Optical losses, phase diffusion and mixing with thermal states lead to decoherence and destroy the non-classical states after some finite transmission-line length. Quantum repeater protocols, which combine quantum memory, entanglement distillation and entanglement swapping, were proposed to overcome this problem. Here we report on the experimental demonstration of entanglement distillation in the continuous-variable regime. Entangled states were first disturbed by random phase fluctuations and then distilled and purified using interference on beam splitters and homodyne detection. Measurements of covariance matrices clearly indicate a regained strength of entanglement and purity of the distilled states. In contrast to previous demonstrations of entanglement distillation in the complementary discrete-variable regime, our scheme achieved the actual preparation of the distilled states, which might therefore be used to improve the quality of downstream applications such as quantum teleportation

    Atmospheric Channel Characteristics for Quantum Communication with Continuous Polarization Variables

    Full text link
    We investigate the properties of an atmospheric channel for free space quantum communication with continuous polarization variables. In our prepare-and-measure setup, coherent polarization states are transmitted through an atmospheric quantum channel of 100m length on the roof of our institute's building. The signal states are measured by homodyne detection with the help of a local oscillator (LO) which propagates in the same spatial mode as the signal, orthogonally polarized to it. Thus the interference of signal and LO is excellent and atmospheric fluctuations are autocompensated. The LO also acts as spatial and spectral filter, which allows for unrestrained daylight operation. Important characteristics for our system are atmospheric channel influences that could cause polarization, intensity and position excess noise. Therefore we study these influences in detail. Our results indicate that the channel is suitable for our quantum communication system in most weather conditions.Comment: 6 pages, 4 figures, submitted to Applied Physics B following an invitation for the special issue "Selected Papers Presented at the 2009 Spring Meeting of the Quantum Optics and Photonics Section of the German Physical Society

    Quantum many-body simulations using Gaussian phase-space representations

    Get PDF
    Phase-space representations are of increasing importance as a viable and successful means to study exponentially complex quantum many-body systems from first principles. This review traces the background of these methods, starting from the early work of Wigner, Glauber and Sudarshan. We focus on modern phase-space approaches using non-classical phase-space representations. These lead to the Gaussian representation, which unifies bosonic and fermionic phase-space. Examples treated include quantum solitons in optical fibers, colliding Bose-Einstein condensates, and strongly correlated fermions on lattices.Comment: Short Review (10 pages); Corrected typo in eq (14); Added a few more reference
    corecore