Many different quantum information communication protocols such as
teleportation, dense coding and entanglement based quantum key distribution are
based on the faithful transmission of entanglement between distant location in
an optical network. The distribution of entanglement in such a network is
however hampered by loss and noise that is inherent in all practical quantum
channels. Thus, to enable faithful transmission one must resort to the protocol
of entanglement distillation. In this paper we present a detailed theoretical
analysis and an experimental realization of continuous variable entanglement
distillation in a channel that is inflicted by different kinds of non-Gaussian
noise. The continuous variable entangled states are generated by exploiting the
third order non-linearity in optical fibers, and the states are sent through a
free-space laboratory channel in which the losses are altered to simulate a
free-space atmospheric channel with varying losses. We use linear optical
components, homodyne measurements and classical communication to distill the
entanglement, and we find that by using this method the entanglement can be
probabilistically increased for some specific non-Gaussian noise channels