865 research outputs found

    Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions

    Get PDF
    Significance: Two-dimensional (2-D) fully convolutional neural networks have been shown capable of producing maps of sO2 from 2-D simulated images of simple tissue models. However, their potential to produce accurate estimates in vivo is uncertain as they are limited by the 2-D nature of the training data when the problem is inherently three-dimensional (3-D), and they have not been tested with realistic images. Aim: To demonstrate the capability of deep neural networks to process whole 3-D images and output 3-D maps of vascular sO2 from realistic tissue models/images. Approach: Two separate fully convolutional neural networks were trained to produce 3-D maps of vascular blood oxygen saturation and vessel positions from multiwavelength simulated images of tissue models. Results: The mean of the absolute difference between the true mean vessel sO2 and the network output for 40 examples was 4.4% and the standard deviation was 4.5%. Conclusions: 3-D fully convolutional networks were shown capable of producing accurate sO2 maps using the full extent of spatial information contained within 3-D images generated under conditions mimicking real imaging scenarios. We demonstrate that networks can cope with some of the confounding effects present in real images such as limited-view artifacts and have the potential to produce accurate estimates in vivo

    Лексическое наполнение современных газет российских немцев как реализация этнической функции языка

    Get PDF
    The purpose of our study was to determine the expression of the pro-apoptotic BAX protein in relation to the mutational status of BAX and p53 (as transcriptional activator of the BAX gene) in benign and malignant thyroid tissue. In 47 patients with thyroid tumours (14 follicular and 3 papillary carcinomas, 14 adenomas and 16 goitres), the DNA was screened for mutations of BAX (exon 1-6) and p53 (exon 5-8) by single-strand conformation polymorphism polymerase chain reaction (SSCP-PCR). Furthermore, the protein expression of BAX, p53 and p21 (which is also increased transcriptionally by p53) was investigated by immunohistochemistry. Surprisingly, we observed elevated BAX levels in patients with thyroid carcinomas compared with patients with adenomas (unpaired t-test: p<0.05) or with goitres (p<0.02). This is in clear contrast to other carcinomas where BAX is frequently inactivated which correlates to a poor prognosis (Sturm et al., 1999). There were no significant differences of the BAX levels between goitres or the adenomas. In the SSCP-PCR analysis, no BAX mutations were detectable. P53 mutation analysis by SSCP-PCR did not reveal any functional p53 mutations in the patients with carcinomas, adenomas or goitres. Nevertheless, patients with carcinomas showed an overexpression (preferentially cytoplasmic) of p53 protein compared with patients with benign tumours (p<0.05). The absence of p53 mutations suggests that the overexpressed p53 is wild type. This is in line with the expression profile of BAX and p21, which showed a higher protein expression in these p53 positive tumours (p<0.05 in the carcinomas compared with the non-malignant lesions). Consequently, the overexpressed p53 might be a correlate for dysregulation without loss of function. This, in turn, might be a reason for the good outcome of some patients with thyroid cancer

    On Learned Operator Correction in Inverse Problems

    Get PDF
    We discuss the possibility of learning a data-driven explicit model correction for inverse problems and whether such a model correction can be used within a variational framework to obtain regularized reconstructions. This paper discusses the conceptual difficulty of learning such a forward model correction and proceeds to present a possible solution as a forward-adjoint correction that explicitly corrects in both data and solution spaces. We then derive conditions under which solutions to the variational problem with a learned correction converge to solutions obtained with the correct operator. The proposed approach is evaluated on an application to limited view photoacoustic tomography and compared to the established framework of the Bayesian approximation error method

    Multistability in the Kuramoto model with synaptic plasticity

    Get PDF
    We present a simplified phase model for neuronal dynamics with spike timing-dependent plasticity (STDP). For asymmetric, experimentally observed STDP we find multistability: a coexistence of a fully synchronized, a fully desynchronized, and a variety of cluster states in a wide enough range of the parameter space. We show that multistability can occur only for asymmetric STDP, and we study how the coexistence of synchronization and desynchronization and clustering depends on the distribution of the eigenfrequencies. We test the efficacy of the proposed method on the Kuramoto model which is, de facto, one of the sample models for a description of the phase dynamics in neuronal ensembles

    Magnetic Resonance in the Spin-Peierls compound αNaV2O5\alpha'-NaV_2O_5

    Full text link
    We present results from magnetic resonance measurements for 75-350 GHz in α\alpha'-NaV2_{2}O5_{5}. The temperature dependence of the integrated intensity indicates that we observe transitions in the excited state. A quantitative description gives resonances in the triplet state at high symmetry points of the excitation spectrum of this Spin-Peierls compound. This energy has the same temperature dependence as the Spin-Peierls gap. Similarities and differences with the other inorganic compound CuGeO3_{3} are discussed.Comment: 2 pages, REVTEX, 3 figures. to be published in Phys.Rev.

    Spin dependent quantum interference in non-local graphene spin valves

    Full text link
    Spin dependent electron transport measurements on graphene are of high importance to explore possible spintronic applications. Up to date all spin transport experiments on graphene were done in a semi-classical regime, disregarding quantum transport properties such as phase coherence and interference. Here we show that in a quantum coherent graphene nanostructure the non-local voltage is strongly modulated. Using non-local measurements, we separate the signal in spin dependent and spin independent contributions. We show that the spin dependent contribution is about two orders of magnitude larger than the spin independent one, when corrected for the finite polarization of the electrodes. The non-local spin signal is not only strongly modulated but also changes polarity as a function of the applied gate voltage. By locally tuning the carrier density in the constriction we show that the constriction plays a major role in this effect and indicates that it can act as a spin filter device. Our results show the potential of quantum coherent graphene nanostructures for the use in future spintronic devices

    Magnetic bound states in the quarter-filled ladder system αNaV2O5\alpha'-NaV_{2}O_{5}}

    Full text link
    Raman scattering in the quarter-filled spin ladder system alpha'-NaV_2O_5 shows in the dimerized singlet ground state (TTSP=35KT \leq T_{SP}=35K) an unexpected sequence of three magnetic bound states. Our results suggest that the recently proposed mapping onto an effective spin chain for T>TSPT > T_{SP} has to be given up in favor of the full topology and exchange paths of a ladder in the dimerized phase for T<TSPT < T_{SP}. As the new ground state we propose a dynamic superposition of energetically nearly degenerate dimer configurations on the ladder.Comment: 5 pages, 4 figures, to be published in PRB, brief reports, Dec. 199

    Spintronic magnetic anisotropy

    Full text link
    An attractive feature of magnetic adatoms and molecules for nanoscale applications is their superparamagnetism, the preferred alignment of their spin along an easy axis preventing undesired spin reversal. The underlying magnetic anisotropy barrier --a quadrupolar energy splitting-- is internally generated by spin-orbit interaction and can nowadays be probed by electronic transport. Here we predict that in a much broader class of quantum-dot systems with spin larger than one-half, superparamagnetism may arise without spin-orbit interaction: by attaching ferromagnets a spintronic exchange field of quadrupolar nature is generated locally. It can be observed in conductance measurements and surprisingly leads to enhanced spin filtering even in a state with zero average spin. Analogously to the spintronic dipolar exchange field, responsible for a local spin torque, the effect is susceptible to electric control and increases with tunnel coupling as well as with spin polarization.Comment: 6 pages with 4 figures + 26 pages of Supplementary Informatio

    Определение факторов, влияющих на азимут развития трещины гидроразрыва пласта на Приобском нефтяном месторождении (ХМАО)

    Get PDF
    Цель работы – определение факторов, влияющих на азимут развития трещины гидроразрыва пласта на П нефтяном месторождении В процессе работы были проведены различные мероприятия по анализу эффективности ГРП, горного напряжение и ориентации трещин в пласте. В работе рассмотрен вопрос о охране труда и окружающей среды. Бакалаврская работа выполнена с учетом современных достижений в области техники и технологии. Выпускная квалификационная работа выполнена в текстовом редакторе Microsoft Word.Purpose – to determine factors influencing the azimuth of the development of the crack hydraulic fracturing for P oil field In the process, various events were carried out to analyze efficiency of hydraulic fracturing, rock stress and orientation of cracks in the formation. The paper discusses the issue of labor protection and the environment. Undergraduate work is performed taking into account modern achievements in the field of engineering and technology. Final qualifying work is executed in a text editor of Microsoft Word
    corecore