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Abstract. We discuss the possibility of learning a data-driven explicit model correction for inverse problems and
whether such a model correction can be used within a variational framework to obtain regularized
reconstructions. This paper discusses the conceptual difficulty of learning such a forward model
correction and proceeds to present a possible solution as a forward-adjoint correction that explicitly
corrects in both data and solution spaces. We then derive conditions under which solutions to
the variational problem with a learned correction converge to solutions obtained with the correct
operator. The proposed approach is evaluated on an application to limited view photoacoustic
tomography and compared to the established framework of the Bayesian approximation error method.
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1. Introduction. In inverse problems it is usually considered imperative to have an ac-
curate forward model of the underlying physics. Nevertheless, such accurate models can be
computationally highly expensive due to possible nonlinearities, large spatial and temporal
dimensions, as well as stochasticity. Thus, in many applications approximate models are used
in order to speed up reconstruction times and to comply with hardware and cost restric-
tions. As a consequence the introduced approximation errors need to be taken into account
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when solving ill-posed inverse problems or a degradation of the reconstruction quality can be
expected.

For instance, in classical computerized tomography with a relatively high dose, models
based on ray transforms are sufficiently accurate for the reconstruction task, whereas the full
physical model would incorporate stochastic X-ray scattering events. Nevertheless, in some
cone beam computerized tomography applications the dose is typically relatively low with a
large field of view and hence scattering becomes more prevalent [38] and simple models based
on the ray transform are not enough to guarantee sufficient image quality. However, as these
scattering events are stochastic, accurate models would be too expensive for practical image
reconstruction. Therefore, the basic model is used as an approximation with an appropriate
correction that accounts for the full physical phenomena [47].

In applications where the forward model is given by the solution of a partial differential
equation, model reduction techniques are often used to reduce computational costs [8, 14, 39].
Such reductions lead to known approximation errors in the model and can be corrected for by
explicit modeling [4, 23]. Recently, with the possibility of combining deep learning techniques
with classical variational methods, approximate models are now also used in the framework
of learned image reconstruction [20]. In this case, the approximate model is embedded in
an iterative scheme and updates are performed by a convolutional neural network (CNN).
Here, model correction is performed implicitly by the network while computing the iterative
updates.

In this paper we investigate the possibility of correcting such approximation errors ex-
plicitly with data-driven methods, in particular, using a CNN. In what follows, we restrict
ourselves to linear inverse problems, with both theory and experiments considering the lin-
ear case only. However, we expect many of the challenges and approaches discussed here to
be relevant and to give insight into the nonlinear case as well. Let x \in X be the unknown
quantity of interest we aim to reconstruct from measurements y \in Y , where X, Y are Hilbert
spaces and x and y fulfil the relation

(1.1) Ax = y,

where A : X \rightarrow Y is the accurate forward operator modeling the underlying physics sufficiently
accurately for any systematic error to be well below the noise level of the acquisition. We
assume that the evaluation of accurately operator A is computationally expensive and we
rather want to use an approximate model \widetilde A : X \rightarrow Y to compute x from y. In doing so, we
introduce an inherent approximation error in (1.1) and have

(1.2) \widetilde Ax = \widetilde y
leading to a systematic model error

(1.3) \delta y = y  - \widetilde y.
Remark 1.1. In general, the range and domain of \widetilde A might be different than those of A.

To simplify the remainder of this paper we assume, unless otherwise stated, that appropriate
projections between the range and domain of the approximate operator \widetilde A as well as the range
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and domain of the accurate operator A are included in the implementation of \widetilde A, so that
expressions such as (1.3) are well-defined.

In this work, we consider corrections for this approximation error via a parameterizable,
possibly nonlinear, mapping F\Theta : Y \rightarrow Y , applied as a correction to \widetilde A. This leads to a
corrected operator A\Theta of the form

(1.4) A\Theta = F\Theta \circ \widetilde A.
We aim to choose the correction F\Theta such that ideally A\Theta (x) \approx Ax for some x \in X of interest.
Restricting the corrected operator A\Theta to be a composition of the approximate operator \widetilde A
and a parameterizable correction yields various advantages compared to fully parameterizing
the corrected operator A\Theta : X \rightarrow Y , without utilizing the knowledge of \widetilde A. It avoids having
to model the typically global dependencies of A in the learned correction and allows us to
employ generic network architectures for F\Theta , such as the popular U-Net [34].

The primary question that we aim to answer is, whether such corrected models (1.4) can
be subsequently used in variational regularization approaches that find a reconstruction x\ast as

(1.5) x\ast = argmin
x\in X

1

2
\| A\Theta (x) - y\| 2Y + \lambda R(x)

with regularization functional R and associated hyperparameter \lambda . Apart from investigating
the practical performance of (1.5), we will discuss conditions on the model correction that
need to be satisfied to guarantee convergence of solutions to (1.5) to the accurate solution as
the corrected operator A\Theta approaches the accurate operator A. We provide theoretical results,
which show that variational regularization strategies can be applied under certain conditions.
In particular, as we will discuss in this study, while it is fairly easy to learn a model correction
that fulfils (1.4), it cannot be readily guaranteed to yield high-quality reconstructions when
used within the variational problem (1.5). This is a conceptual difficulty caused by a possible
discrepancy in the range of the adjoints of A and \widetilde A that can be an inherent part of the
approximate model and hence first order methods to solve (1.5) yield nondesirable results.

To overcome this restriction, we introduce a forward-adjoint correction that combines an
explicit forward model correction with an explicit correction of the adjoint. We will show that
such a forward-adjoint correction---if trained sufficiently well---provides a descent direction for
a gradient scheme to solve (1.5) for which we can guarantee convergence to a neighborhood
of the solution obtained with the accurate operator A.

This work fits into the wider field of learned image reconstruction techniques that have
sparked large interest in recent years [5, 22, 25]. In particular, we are motivated by model-
based learned iterative reconstruction techniques that have shown to be highly successful in a
variety of application areas [1, 2, 17, 21, 36]. These methods generally mimic iterative gradient
descent schemes and demonstrate impressive reconstruction results with often considerable
speedups [18], but are mostly empirically motivated and lack convergence guarantees. In
contrast, this paper follows a recent development in understanding how deep learning methods
can be combined with classical reconstruction algorithms, such as variational techniques, to
retain established theoretical results on convergence. Whereas most studies are concentrated
on learning a regularizer [27, 31, 33, 37], we concentrate here on the operator only and keep
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Table 1

Symbol Description Definition

X Reconstruction space Hilbert space, norm \| \cdot \| X , product \langle \cdot , \cdot \rangle X
Y Measurement space Hilbert space, norm \| \cdot \| Y , product \langle \cdot , \cdot \rangle Y
A Exact forward operator A : X \rightarrow Y\widetilde A Approximate forward operator \widetilde A : X \rightarrow Y
F\Theta Parameterizable correction in Y F\Theta : Y \rightarrow Y
G\Phi Parameterizable correction in X G\Phi : X \rightarrow X

A\Theta Corrected forward operator A\Theta : X \rightarrow Y , A\Theta = F\Theta \circ \widetilde A
A\ast 

\Phi Corrected adjoint A\ast 
\Phi : Y \rightarrow X, A\ast 

\Phi = G\Phi \circ \widetilde A\ast 

Df(t) Fr\'echet derivative of f at t Df(t) : \bfd \bfo \bfm (f) \rightarrow \bfr \bfn \bfg (f)
f(t+ \delta t) = f(t) +Df(t)\delta t+\scrO (\delta t2)

R Regularization functional R : X \rightarrow \BbbR +

\scrL Variational functional with A \scrL (x) = 1
2
\| Ax - y\| 2Y + \lambda R(x)

\scrL \Theta Variational functional with A\Theta \scrL \Theta (x) =
1
2
\| A\Theta (x) - y\| 2Y + \lambda R(x)

a fixed, analytical form for the regularizer. Further, related works that consider learned
corrections by utilising explicit knowledge of the operator range are [7, 9, 37]. Another line
of research examines the incorporation of imperfectly known forward operators into a fully
variational model [10, 29] as well as perturbations in [13, 32]. We note also the connection to
the concept of calibration in a Bayesian setting [26].

This paper is organized as follows. In section 2, we introduce the concept of model
correction and compare it to previous work in the field. In section 3, we discuss forward
corrections and demonstrate their limitations. To overcome these limitations, we introduce
the forward-adjoint corrections in section 4, where we also present convergence results for this
correction. This is followed by a discussion of computational challenges and the experimental
setup in section 5. Finally, in section 6, we demonstrate the performance of the discussed
approaches on two data sets for limited view photoacoustic tomography.

Glossary. To improve readability throughout the paper we provide a glossary (see Table 1)
with the definition of frequently used notation.

2. Learning a model correction. As we have motivated above, we only consider an explicit
model correction (1.4) in this study and leave the regularization term untouched. Therefore,
we will discuss in the following how a model correction using data-driven methods is possible
and what the main challenges are.

Before we turn to the discussion of an explicit correction, it is important to make the
distinction from an implicit correction in the framework of learned iterative reconstructions.
In particular, we concentrate here on learned gradient schemes [1], which can be formulated
by a network \Lambda \Theta , that is designed to mimic a gradient descent step. In particular, we train
the networks to perform an iterative update, such that

(2.1) xk+1 = \Lambda \Theta 

\biggl( 
\nabla x

1

2
\| Axk  - y\| 2Y , xk

\biggr) 
,

where \nabla x
1
2\| Axk  - y\| 2Y = A\ast (Axk  - y). Now, one could use an approximate model instead
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of the accurate model and compute an approximate gradient given by \widetilde A\ast ( \widetilde Axk  - y) for the
update in (2.1), as proposed in [20]. The network \Lambda \Theta then implicitly corrects the model
error to produce the new iterate. That means, the correction and a prior are, hence, trained
simultaneously with the update in (2.1). Such approaches are typically trained by using a loss
function, like the L2-loss, to measure the distance between reconstruction and a ground-truth
phantom.

On the other hand, in the explicit approach that we pursue here, we aim to learn a
correction A\Theta that is independent of the regularization use. It can hence be trained using
knowledge of the accurate and approximate operator alongside training data in either X or
Y , without requiring pairs of measurements and their corresponding ground-truth phantoms.
In a scenario where the operators cannot been accessed directly, samples of pairs from the
two operators can even be sufficient to fit an explicit operator correction. While implicit
methods have been shown to perform well in practice [20], our approach will yield an explicit
correction and as such can be used in combination with any regularization functional and
builds on the established variational framework. Furthermore, we note that the study of
explicit methods also allows one to uncover and investigate some of the fundamental challenges
of model correction that might easily be left ignored in implicit approaches.

Thus, we will concentrate our discussion in the following on how an explicit data correction
can be achieved, how the correction of the model \widetilde A can be parameterized by a neural network,
and how this can be incorporated into a variational framework.

2.1. Approximation error method (AEM). A well-established approach to incorporate
model correction into a reconstruction framework, such as (1.5), is given by Bayesian approx-
imation error modeling [23, 24]. Let us shortly recall, that in Bayesian inversion we want
to determine the posterior distribution of the unknown x given y, and by Bayes' formula we
obtain

(2.2) p(x| y) = p(y| x)p(x)
p(y)

.

Thus, the posterior distribution is characterized by the likelihood p(y| x) and the chosen prior
p(x) on the unknown. Typically, the likelihood p(y| x) is modeled using accurate knowledge of
the forward operator A : X \rightarrow Y as well as the noise model. In the AEM, the purpose is now
to adjust the likelihood by examining the difference between the (accurate) forward operator
A and its approximation \widetilde A of the model (1.1)--(1.2) as

(2.3) \varepsilon = \delta y = Ax - \widetilde Ax.
Including an additive model for the measurement noise e, this leads to an observation model

(2.4) y = \widetilde Ax+ \varepsilon + e.

We model the noise e independently of x as Gaussian e \sim \scrN (\eta e,\Gamma e), where \eta e and \Gamma e are the
mean and covariance of the noise. Further, the model error \varepsilon is approximated as Gaussian
\varepsilon \sim \scrN (\eta \varepsilon ,\Gamma \varepsilon ) and is modeled independently of noise e and unknown parameters x leading to
a Gaussian distributed total error n = \varepsilon + e, n \sim \scrN (\eta n,\Gamma n), where \eta \varepsilon and \eta n are means and
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\Gamma \varepsilon and \Gamma n are the covariance matrices of model error and total errors, respectively. This leads
to a so-called enhanced error model [23] with a likelihood distribution of the form

p(y| x) \sim exp

\biggl( 
 - 1

2
\| Ln( \widetilde Ax - y + \eta n)\| 2Y

\biggr) 
,

where L\mathrm{T}
nLn = \Gamma  - 1

n is a matrix square root such as the Cholesky decomposition of the inverse
covariance matrix of the total error. In the case of Gaussian white noise with a zero mean
and a constant standard deviation \sigma , this can be written as

p(y| x) \sim exp

\biggl( 
 - 1

2\sigma 
\| L\varepsilon ( \widetilde Ax - y + \eta \varepsilon )\| 2Y

\biggr) 
,

where L\mathrm{T}
\varepsilon L\varepsilon = \Gamma  - 1

\varepsilon . This could be used to motivate writing the variational problem (1.5) in
the form

(2.5) x\ast = argmin
x\in X

1

2
\| L\varepsilon ( \widetilde Ax - y + \eta \varepsilon )\| 2Y + \lambda R(x).

In order to utilize the approach, the unknown distribution of the model error needs to
be approximated. That can be obtained, for example, by simulations [4, 41] as follows. Let
\{ xi, i = 1, . . . , N\} be a set of samples drawn from a training set. The corresponding samples
of the model error are then

(2.6) \varepsilon i = Axi  - \widetilde Axi
and the mean and covariance of the model error can be estimated from the samples as

\eta \varepsilon =
1

N

N\sum 
i=1

\varepsilon i,(2.7)

\Gamma \varepsilon =
1

N  - 1

N\sum 
i=1

\varepsilon i(\varepsilon i)\mathrm{T}  - \eta \varepsilon \eta 
\mathrm{T}
\varepsilon .(2.8)

2.2. Learning a general model correction. The classical Bayesian AEM provides an
affine linear correction of the likelihood in (2.5) and by construction is limited to cases where
the error between accurate and approximate models (2.3) can be approximated as normally
distributed. As this can be too restrictive in certain cases to describe more complicated errors,
we will now address a more general concept of learning a nonlinear explicit model correction.

That is, given an accurate underlying forward model A, we aim to find a (partially) learned
operator A\Theta which we consider as an explicitly corrected approximate model of the form (1.4).
To do so, we need to set a notion of distance between A and A\Theta in order to assess the quality
of the approximation. A seemingly natural notion of distance between two operators would
be the supremum norm over elements in X, that is, we consider here

\| A - A\Theta \| X\rightarrow Y := sup
x\in X:\| x\| =1

\| Ax - A\Theta (x)\| Y .(2.9)
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However, in many relevant applications it is impossible to find a correction of the form A\Theta =
F\Theta \circ \widetilde A that achieves low uniform approximation error, making this notion of distance too
restrictive. For instance, if we consider the case of a learned a posteriori correction of some
approximate model \widetilde A with a parameterizable mapping F\Theta : Y \rightarrow Y that fulfils (1.4), then
the approximate model \widetilde A can exhibit a nullspace kern( \widetilde A) that is different from that of the
accurate operator and, in particular, is potentially much larger. Thus, there may exist a (or
several) v \in kern( \widetilde A) with Av \not = 0. Any corrected operator A\Theta = F\Theta \circ \widetilde A then exhibits an
error in the sense of (2.9) of at least \| Av\| Y , as

\| A - A\Theta \| X\rightarrow Y \geq max\{ \| Av  - F\Theta (0)\| Y , \| A( - v) - F\Theta (0)\| Y \} 
\geq min

y\in Y
max\{ \| Av  - y\| Y , \|  - Av  - y\| Y \} 

= \| Av\| Y ,

where in the last equality we have used that the point minimizing the maximum of the distance
to two other points is the center of the line through those points. In our case, the center of the
line between Av and  - Av is always the origin of the coordinate system 0, independently of
the choice of A and v. In other words, the information in direction v is lost in the approximate
model and would need to be recovered subsequently by the correction F\Theta . If there are several
such nontrivial v \in kern( \widetilde A), a uniform correction becomes increasingly difficult in the form
of (2.9). We will illustrate this difficulty in the following section 2.2.1.

While aiming for a uniform correction is impractical, it can nevertheless be possible to
correct the operator \widetilde A using an a posteriori correction as in (1.4), provided a weaker notion
of operator distance is employed. Here, we propose an empirical, learned notion of operator
correction, that is optimized for a training set of points \{ xi, i = 1, . . . , N\} , similar to section
2.1. More precisely, we examine the average deviation of A\Theta from A as

1

N

N\sum 
i

\| A\Theta (x
i) - Axi\| Y(2.10)

in a suitable norm \| \cdot \| . In this notion, it is sufficient for the operators to be close in the mean
for a given training set and hence we call this a statistical or learned correction with respect
to the chosen training set. For instance, if the kernel direction v \in kern( \widetilde A) is orthogonal to
the sample xi, the information lost in direction v is not crucial for representing the data of
interest. Alternatively, the kernel direction v might be highly correlated with another direction
w /\in kern( \widetilde A) in the sense that \langle xi, v\rangle \approx \langle xi, w\rangle for all i. Then the result of Av can be inferred
from \widetilde Aw, even though \widetilde Av = 0.

To conclude this section, we note that in many cases we cannot hope to find a uniform
model correction, but that correcting the model error can be still attempted using the notion
of learned correction, quantified by (2.10). This is possible even if the operators A and \widetilde A
are exhibiting different kernel spaces, as long as the training set \{ xi, i = 1, . . . , N\} exhibits
sufficient structure to compensate for the loss of information in the approximate model.

Remark 2.1. We consider nonlinear corrections A\Theta = F\Theta \circ \widetilde A in this paper even when cor-
recting a linear operator A from a linear approximation \widetilde A, as in our computational examples.
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We have three main motivations to do so. First, there are well-established nonlinear network
architectures, such as U-Net [34], that are highly powerful and in fact have considerably fewer
parameters than a fully parameterized linear map when the method is applied to applications
in 3 dimensions, making the nonlinear approach scalable. Second, when considering nonlin-
ear corrections, a generalization to the context of nonlinear operators will be easier. Finally
and most importantly, while the operators A and \widetilde A might be linear, the region of interest in
image and data space where we need a good correction is highly nonlinear, in the sense that
the samples xi in (2.10) are drawn from a distribution with nonlinear support. This makes
nonlinear corrections considerably more powerful in correcting model errors than their linear
counterparts.

2.2.1. A toy case: Downsampling. In order to illustrate the challenge of a learned op-
erator correction, we consider a toy case. Here, the accurate forward model A is given by a
downsampling operator with an averaging filter, while the approximate model \widetilde A simply skips
every other sample. Concretely, we consider x \in \BbbR n, y \in \BbbR n/2 and \widetilde A,A \in \BbbR n/2\times n, given by

(2.11) A =

\left(     
1
2

1
4
1
4

1
2

1
4

. . .
. . .

. . .
1
4

1
2

1
4

\right)     and \widetilde A =

\left(     
1 0

0 1 0
. . .

. . .
. . .

0 1 0

\right)     .

Clearly, both operators have very different kernel spaces, with A vanishing on inputs of
even magnitude with alternating sign, whereas \widetilde A vanishes for every v with v[j] = 0, with
index j even, and any value for j odd. In other words, the null space is spanned by the unit
vectors with odd index, kern( \widetilde A) = \{ ej | 0 < j \leq n, j even\} . In fact, by the same argument

as above, these v \in kern( \widetilde A) with \| v\| \infty = 1 are such that the uniform approximation error
for any correction will be \| Av  - F\Theta ( \widetilde Av)\| \infty \geq \| Av\| \infty \geq 0.25 for all v \in kern( \widetilde A).

This example exhibits the two features described in the previous section: First, a uniform
correction in the sense of (2.9) is impossible due to different kernel spaces. However, a learned
correction in the mean (2.10) is possible on some data \{ xi, i = 1, . . . , N\} consisting of piecewise
constant functions: On these samples the two operators \widetilde A and A already coincide everywhere
except near jumps, where a weighted average can be employed to correct the approximation
error.

2.3. Solving the variational problem. We now aim to solve an inverse problem given the
corrected model A\Theta by solving the associated variational problem (1.5). In this context it is
natural to require that the solutions of the two minimization problems, involving the operator
correction A\Theta and A, are close, that is,

argmin
x\in X

1

2
\| A\Theta (x) - y\| 2Y + \lambda R(x) \approx argmin

x\in X

1

2
\| Ax - y\| 2Y + \lambda R(x).(2.12)

Note that this formulation is different than the AEM (2.5), where the data fidelity term is
given by \| L\varepsilon ( \widetilde Ax  - y + \eta \varepsilon )\| 2Y . Solutions to (1.5) are then usually computed by an iterative
algorithm. Here we consider first order methods to draw connections to learned iterative
schemes [1, 2, 17]. In particular, we consider a classic gradient descent scheme, assuming
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differentiable R. Then, given an initial guess x0, we can compute a solution by the following
iterative process:

(2.13) xk+1 = xk  - \gamma k\nabla x

\biggl( 
1

2
\| Axk  - y\| 2X + \lambda R(xk)

\biggr) 
with appropriately chosen step size \gamma k > 0. When using (2.13) for the corrected operator it
seems natural to ask for a gradient consistency of the approximate gradient

\nabla x\| A\Theta (x) - y\| 2X \approx \nabla x\| Ax - y\| 2X(2.14)

and hence we can identify

N\sum 
i=1

\bigm\| \bigm\| \bigm\| \nabla x

\bigm\| \bigm\| A\Theta (x
i) - yi

\bigm\| \bigm\| 2
X
 - \nabla x

\bigm\| \bigm\| Axi  - yi
\bigm\| \bigm\| 2
X

\bigm\| \bigm\| \bigm\| (2.15)

as another relevant measure of quality for model corrections within the variational framework,
if gradient schemes are used to solve (1.5). In the following we will discuss the possibilities
of obtaining a correction, such that we can guarantee a closeness of solutions in the sense of
(2.12).

3. Forward model correction. We will now present the possibility of correcting the for-
ward model only and discuss resulting shortcomings of this approach. More precisely, in a
forward model correction, the approximate operator \widetilde A : X \rightarrow Y is corrected using a neural
network F\Theta : Y \rightarrow Y that is trained to remove artefacts in data space for a given training set.
This leads to a corrected operator of the form A\Theta = F\Theta \circ \widetilde A.

3.1. The adjoint problem. To solve the minimization problem (1.5) with the learned
forward operator with an iterative scheme such as (2.13), we need to compute the gradient of
the data fidelity. We recall that the corrected operator A\Theta = F\Theta \circ \widetilde A, where the correction
F\Theta is given by a nonlinear neural network. Following the chain rule we obtain the following
gradient:

(3.1)
1

2
\nabla x\| A\Theta (x) - y\| 22 = \widetilde A\ast 

\Bigl[ 
DF\Theta ( \widetilde Ax)\Bigr] \ast \Bigl( F\Theta ( \widetilde Ax) - y

\Bigr) 
.

Here, we denote by DF\Theta (y) the Fr\'echet derivative of F\Theta at y, which is a linear operator
Y \rightarrow Y , whereas the gradient for the correct data fidelity term is simply given by

1

2
\nabla x\| Ax - y\| 2Y = A\ast (Ax - y).

That means, to satisfy the gradient consistency condition (2.14), we would need

(3.2) \widetilde A\ast 
\Bigl[ 
DF\Theta ( \widetilde Ax)\Bigr] \ast \Bigl( F\Theta ( \widetilde Ax) - y

\Bigr) 
\approx A\ast (Ax - y).

On the other hand, if we train the forward model correction, only requiring consistency in
data space by minimizing (2.10), we will only ensure consistency of the residuals F\Theta ( \widetilde Ax) - y \approx 
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Ax - y, but not full gradient consistency as in (2.14). In order to enforce gradient consistency
we need to control the derivative of the network DF\Theta ( \widetilde Ax) and consequently also need to
take the adjoint into consideration when training the forward correction. This could be done
by adding an additional penalty term to (2.10) that penalizes the network for exhibiting an
adjoint different from A\ast . For that purpose, let us examine the adjoint of the linearization of
the correction operator A\Theta around a point x:

(DA\Theta (x))
\ast [y] = \widetilde A\ast 

\Bigl( 
DF\Theta ( \widetilde Ax)\Bigr) \ast 

[y].

With this we can consider the following additional penalty term in the training:

(3.3)
\bigm\| \bigm\| \bigm\| \Bigl( A\ast  - \widetilde A\ast \circ 

\Bigl[ 
DF\Theta ( \widetilde Ax)\Bigr] \ast \Bigr) (r)

\bigm\| \bigm\| \bigm\| 
X
, where r = F\Theta ( \widetilde Ax) - y

and choose r to be the residual in data space F\Theta ( \widetilde Ax)  - y that arises when minimizing the
data fidelity term as in (3.1).

However this solution comes with its own drawback. As we can see in (3.1), the range of
the corrected fidelity term's gradient (3.1) is limited by the range of the approximate adjoint,
rng( \widetilde A\ast ). Thus, we identify the key difficulty here in the differences of the range of the accurate
and the approximate adjoints rather than the differences in the forward operators themselves,
which links back to the discussion in 2.2.

Indeed, a correction of the forward operator via composition with a parameterized model
F\Theta in measurement space is not able to yield gradients close to the gradients of the accurate
data term if rng( \widetilde A\ast ) and rng(A\ast ) are too different. This problem is exacerbated if the
dimensions of these two spaces differ and we cannot expect to find a correction that satisfies
the gradient consistency (3.2) and, related to Remark 1.1, even suitable projections in \widetilde A would
not be sufficient to compensate for this. This observation can be made precise in the following
theorem.

Theorem 3.1 (unlearnability of a gradient consistent forward model correction). Let A and\widetilde A be compact linear operators from X to Y and the solutions

\^x \in argmin
x

1

2
\| Ax - y\| 2Y ,(3.4)

\^x\Theta critical point of
1

2
\| A\Theta (x) - y\| 2Y(3.5)

be given. If \widetilde x0 \in rng( \widetilde A\ast ) and \^x /\in rng( \widetilde A\ast ), then a gradient descent algorithm for the
functional in (3.5), initialized with \widetilde x0, yields a solution such that \^x\Theta \not = \^x for any \^x solving
(3.4).

Proof. This follows directly from the update equations for solving (3.5) by

\widetilde xk+1 = \widetilde xk  - \lambda k\Delta \widetilde xk
with

(3.6) \Delta \widetilde xk :=
1

2
\nabla \widetilde xk

\| A\Theta (\widetilde xk) - y\| 2Y = \widetilde A\ast 
\Bigl[ 
DF\Theta ( \widetilde A\widetilde xk)\Bigr] \ast \Bigl( F\Theta ( \widetilde A\widetilde xk) - y

\Bigr) 
.
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Phantom x Forward Ax Adjoint A\ast Ax

(a) Application of the accurate forward operator and its adjoint

Forward \widetilde Ax Adjoint \widetilde A\ast \widetilde Ax Adjoint \widetilde A\ast Ax

(b) Application of the approximate forward operator and its adjoint

Figure 1. Illustration of mapping properties for the toy case. As we can see, the range of the adjoint and
approximate adjoint are essentially different. Even if the approximate adjoint \widetilde A\ast is applied to the ideal data Ax
(bottom right), representing a perfect fit of the forward model, the range of the approximate adjoint \bfr \bfn \bfg ( \widetilde A\ast )
makes it impossible to compute a consistent gradient in (2.14) without further modifications.

If \widetilde x0 \in rng( \widetilde A\ast ) then \Delta \widetilde x0 \in rng( \widetilde A\ast ), and hence \widetilde x1 \in rng( \widetilde A\ast ). By induction this is true for

all k > 0, i.e., \widetilde xk \in rng( \widetilde A\ast ), \forall k and thus any limit point \^x\Theta \in rng( \widetilde A\ast ) lies in the closure of

the range of \widetilde A\ast . Since \^x /\in rng( \widetilde A\ast ) it follows that \^x \not = \^x\Theta for any limit point of a gradient
descent algorithm for solving (3.5).

Thus, a correction of the forward model by requiring only consistency in data space does
not in fact ensure consistency of the data term, when solving a variational problem. Addi-
tionally, according to Theorem 3.1 even including an additional penalty term in the form of
(3.3) does not solve this problem.

3.1.1. Illustration with the toy case. Going back to the toy case from section 2.2.1, where
we considered a downsampling operation, the approximate operator was chosen such that the
null space is spanned by the unit vectors with even index. The range of the adjoint can then be
characterized by the identity rng( \widetilde A\ast ) = (kern( \widetilde A))\bot and hence we have rng( \widetilde A\ast ) = \{ ej | 0 \leq 
j \leq n, j odd\} . It is now clear, that we cannot compute any solution x\ast /\in rng( \widetilde A\ast ) by the
updates in (3.6), if we initialize them with \widetilde x0 \in rng( \widetilde A\ast ), since all updates are restricted to
the range of the adjoint of the approximate operator. This problem is illustrated in Figure 1,
where we consider an imaging problem for illustrative purposes and x is vectorized before the
operators in (2.11) are applied. Whereas the difference in the forward operator is minimal for
this example, the range of the approximate adjoint makes it impossible to recover the phantom
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without further adjustments after application of the adjoint, which will be addressed in the
next section.

4. Forward-adjoint correction. As is evident from the last section, a forward model cor-
rection that is computed to minimize (2.10) in data space alone is not sufficient to compute
the actual reconstruction in a variational framework. We additionally require consistency in
the gradients of the data fidelity term (2.15) which in turn boils down to a condition for a
correction on the adjoint of the corrected forward operator in image space, motivated by (3.3).
We will refer to such a correction in data and image space as a forward-adjoint correction,
as we will learn a correction of the forward operator, as well as a correction of the adjoint
(backward).

4.1. Obtaining a forward-adjoint correction. The goal is now to obtain a gradient con-
sistent model correction. To achieve this we propose to learn two networks. That is, we learn
a network F\Theta that corrects the forward model and another network G\Phi that corrects the
adjoint, such that we have

A\Theta := F\Theta \circ \widetilde A, A\ast 
\Phi := G\Phi \circ \widetilde A\ast .

These corrections are obtained as follows. Given a set of training samples (xi, Axi), we train
the forward correction F\Theta acting in measurement space Y with the loss

min
\Theta 

\sum 
i

\| F\Theta ( \widetilde Axi) - Axi\| Y .(4.1)

In an analogous way, we correct the adjoint with the network G\Phi acting on image space X
with the loss

min
\phi 

\sum 
i

\| G\Phi ( \widetilde A\ast ri) - A\ast ri\| X .(4.2)

Here, we can choose the direction ri = F\Theta ( \widetilde Axi)  - yi as in (3.3) for the adjoint loss. This
ensures that the adjoint correction is in fact trained in directions relevant when solving the
variational problem.

At evaluation time, the corrected operators can then be used to compute approximate
gradients of the data fidelity term \| Ax - y\| 2Y . The gradient then takes the form

A\ast (Ax - y) \approx 
\Bigl( 
G\Phi \circ \widetilde A\ast 

\Bigr) \Bigl( 
F\Theta ( \widetilde Ax) - y

\Bigr) 
.(4.3)

Let us note that the separate correction of the adjoint and the forward operator comes
with a change of philosophy compared to existing methods for forward operator correction as
presented in section 2.1. Instead of trying to fit a single corrected operator A\Theta that is already
parameterized according to its use within the data fidelity term of a variational problem, we
fit a nonlinear corrected operator A\Theta whose use within the variational problem requires to
fit the gradient of the data term directly. This gradient fit takes the form as in (4.3). We
use the gradient of the data fidelity term to directly obtain the gradient of the variational
functional for our corrected operator, allowing us to perform minimization techniques like
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gradient descent. We take the obtained critical point of these dynamics as the reconstruction.
Note that the approximate gradient cannot be associated with a variational functional for
the forward-adjoint method anymore. Instead, the gradient is parameterized directly, without
parametrizing the variational functional first.

Remark 4.1. We note that such a separate correction in image and data space can be
related to learned primal dual (LPD) methods [2], where the correction is performed implicitly
as described in section 2. This explains in part why LPD approaches might be especially
suitable for applications with an imperfectly known operator; see also [44].

In the following section we will discuss how these dynamics relate to the original variational
problem and we will see that they can in fact take us close to the original reconstruction if
both the forward and adjoint are fit sufficiently well.

4.2. Convergence analysis. The purpose of this section is to show that sufficiently small
training losses can ensure that gradient descent over (1.5) converges to a neighborhood of the
reconstruction \^x, obtained with the accurate operator A. The section relates to the forward-
adjoint correction (4.3) and uses the notation of this approach. In the case of forward-adjoint
correction, these loss functions are given by

\| Ax - A\Theta (x)\| Y and \| (A\ast  - A\ast 
\Phi ) (A\Theta (x) - y)\| X .(4.4)

Let us now consider for any y \in Y the two functionals

\scrL (x) := 1

2
\| Ax - y\| 2Y + \lambda R(x),

\scrL \Theta (x) :=
1

2
\| A\Theta (x) - y\| 2Y + \lambda R(x)

associated with the variational problem for the reconstruction x from the measurement y.
We will show connections between the reconstruction \^x := argminx \scrL (x) using the accurate
operator A and the solutions \^x\Theta \in argminx \scrL \Theta (x) obtained with our corrected operator A\Theta .

When considering the gradient descent dynamics over \scrL \Theta , we do not refer to the actual
gradient over \scrL \Theta but instead consider the direct fit to the gradient of the form A\ast 

\Phi (A\Theta (x)  - 
y)+\lambda \nabla R(x) as discussed in the last section. In a slight abuse of notation we will nevertheless
denote this gradient as \nabla \dagger \scrL \Theta := A\ast 

\Phi (A\Theta (x) - y) + \lambda \nabla R(x) to keep the notation easy to read
in the remainder of this section. If R is merely subdifferentiable, then \nabla R(x) denotes an
element in the subgradient of R.

For the remainder of this chapter, we make the following assumption on the regularization
functional R.

Assumption 4.2 (strong convexity). We assume that the regularization functional R is
strongly convex and denote the strong convexity constant by m.

Remark 4.3. Assumption 4.2 in particular holds for R being the Tikhonov regularization

functionalR(x) = \| x\| 2X and for the pseudo-Huber lossR(x) =
\int 
[0,1]2 \delta 

\Bigl[ \sqrt{} 
1 + 1

\delta 2
\| \nabla tx(t)\| 2  - 1

\Bigr] 
for a bounded function x : [0, 1]2 \mapsto \rightarrow \BbbR and \delta > 0 which we use in the experimental section.
For operators A with bounded inverse it is sufficient for the regularization functional to be
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convex to ensure strong convexity of the resulting variational functional \scrL . In this case, strong
convexity of the regularization functional is not required.

This allows us to use the following two fundamental lemmas on the behavior of \scrL near
the minimum of the variational functional. As a direct consequence of 4.2 and the convexity
of the data term for linear forward operators we will from now on assume \scrL to be strongly
convex.

Lemma 4.4 (proximity to minimizer). Let \scrL be strongly convex. Then for every \epsilon there is
a \delta > 0 such that for any x

(4.5) \scrL (x) - \scrL (\^x) \leq \delta =\Rightarrow \| x - \^x\| X \leq \epsilon ,

where \^x := argminx \scrL (x).
Proof. By the definition of strong convexity we have

\scrL (x) \geq \scrL (\^x) + \langle s\^x, x - \^x\rangle X +
m

2
\| x - \^x\| 2X ,

where s\^x \in \partial \scrL (\^x) is in the subdifferential of \scrL at \^x. Using 0 \in \partial \scrL (\^x) yields

\delta \geq \scrL (x) - \scrL (\^x) \geq m

2
\| x - \^x\| 2X

which proves the claim by setting \delta = \epsilon 2

2m .

Lemma 4.5 (lower gradient norm bound). Let \scrL be strongly convex. For every \epsilon there is a
\delta > 0 such that for any x

\| x - \^x\| X > \epsilon =\Rightarrow \forall s \in \partial \scrL (x) : \| s\| X > \delta ,(4.6)

where \partial \scrL (x) denotes the subdifferential of \scrL at x and \^x := argminx \scrL (x).
Proof. By the definition of strong convexity

\scrL (\^x) \geq \scrL (x) + \langle sx, \^x - x\rangle X +
m

2
\| x - \^x\| 2X ,

where again sx denotes an element in the subdifferential of \scrL around x. Then by the Cauchy--
Schwarz inequality

\scrL (\^x) - \scrL (x) - m

2
\| x - \^x\| 2X \geq  - \| sx\| X\| \^x - x\| X .

Using \scrL (\^x) - \scrL (x) < 0 by assumption shows

m

2
\| x - \^x\| 2X \leq \| sx\| X\| \^x - x\| X

and, hence, \| sx\| X \geq m
2 \| x - \^x\| X , which proves the result.

Remark 4.6. The assumption of strong convexity is used in the following results via Lem-
mas 4.4 and 4.5 only. While it is a sufficient condition for these to hold, it is not necessary. In
particular, if the variational functional is not strongly convex but such that 4.4 and 4.5 hold
true, the following results still apply.
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We now turn to show that a minimizer \^x\Theta of the approximate functional can in fact
be computed with a gradient descent scheme and that this leads minimizer in fact to the
accurate reconstruction \^x. We begin by extending Lemma 4.5 to include the regularization
term. For this purpose, we consider the alignment of the variational gradients including the
regularization term

cos\Phi v(x) :=
\langle \nabla \scrL (x),\nabla \dagger \scrL \Theta (x)\rangle 

\| \nabla \scrL (x)\| 2
.(4.7)

We show how the alignment can be used as the key quantity to guarantee convergence of the
approximate dynamics to a a neighborhood of the accurate solution. We remark again the
abuse of notation \nabla \dagger \scrL \Theta (x) := A\ast 

\Phi (A\Theta (x) - y) + \lambda \nabla R(x).

Proposition 4.7 (convergence under alignment constraints). Assume that outside a neigh-
borhood U of the minimizer \^x of the exact functional \scrL we have

cos\Phi (x) > \delta 1 > 0

for some \delta 1 > 0. Then eventually the gradient descent dynamics over \scrL \Theta will reach the
neighborhood U .

Proof. Denote by x\Theta (t) the trajectory of the reconstruction under the gradient flow

\partial tx\Theta (t) =  - \nabla \dagger \scrL \Theta (x\Theta (t)).

Consider the evaluation of the variational loss \scrL that invokes the correct forward operator A.
Using the bound of the alignment as in Lemma 4.8, we can bound

\partial t\scrL (x\Theta (t)) = \langle \nabla \scrL (x\Theta (t)), \partial tx\Theta (t)\rangle X =  - \langle \nabla \dagger \scrL (x\Theta (t)),\nabla \scrL \Theta (x\Theta (t))\rangle X
\leq  - \delta 1 \cdot \| \nabla \scrL (x)\| 2X .

As long as \Theta (t) has not reached the neighborhood U , by (4.6), we have \| \nabla \scrL (x)\| X > \delta 2 for
some \delta 2 and hence

\partial t\scrL (x\Theta (t)) \leq  - \delta 1 \cdot \| \nabla \scrL (x)\| 2X \leq  - 1

2
\delta 1\delta 2 =:  - c < 0.

The gradient flow dynamics induced by \nabla \dagger \scrL \Theta hence induce a decrease of \scrL at a rate that is
globally bounded by c outside a neighborhood U around \^x, concluding the proof by Lemma
4.4.

We have shown that even though the corrected operator A\Theta is potentially nonlinear,
the gradient dynamics induced by \nabla \dagger \scrL \Theta can in fact minimize the variational problem with
the accurate operator A, effectively minimizing the associated variational functional \scrL and
leading us close to the accurate solution \^x. The proposition is based on an assumption about
the alignment cos\Theta . We will directly track this quantity in our experimental section, making
sure the convergence results can be applied to our experimental findings. The training loss,
however, is not based on the alignment directly, but rather minimizes a combination of forward
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and adjoint loss. We have in fact found that this combination of loss functionals is both more
interpretable and more stable than directly minimizing the alignment. The following lemma
and theorem show that these loss functions in fact minimize a lower bound on the alignment
and hence a sufficiently well-trained correction can also be guaranteed to yield results close to
the minimizer \^x of the variational functional involving the exact operator A. In this context,
a well-trained correction is such that it achieves sufficiently low training errors.

Lemma 4.8 (complete gradient alignment bound). Let \scrL and \scrL \Theta be defined as above. We
have the lower bound

cos\Phi v \geq 1 - 
\| A\| X\rightarrow Y \| (A - A\Theta )(x)\| Y + \| (A\ast  - A\ast 

\Phi )(A\Theta (x) - y)\| X
\| \nabla \scrL (x)\| X

,

where cos\Phi v is defined as in (4.7).

Proof. A straightforward calculation shows

\langle \nabla \scrL (x),\nabla \dagger \scrL \Theta (x)\rangle X
\| \nabla \scrL (x)\| 2X

=
\langle \nabla \scrL (x),\nabla \scrL (x)\rangle X

\| \nabla \scrL (x)\| 2X
+

\langle \nabla \dagger \scrL \Theta (x) - \nabla \scrL (x),\nabla \scrL (x)\rangle X
\| \nabla \scrL (x)\| 2X

\geq 1 - \| \nabla \dagger \scrL \Theta (x) - \nabla \scrL (x)\| X
\| \nabla \scrL (x)\| X

.

The result follows by using the bound

\| A\ast (Ax - y) - A\ast 
\Phi (A\Theta (x) - y)\| X

\leq \| A\| X\rightarrow Y \| (A - A\Theta )(x)\| Y + \| (A\ast  - A\ast 
\Phi )(A\Theta (x) - y)\| X ,

which itself emerges directly from the triangular inequality applied to the identity

A\ast (Ax - y) - A\ast 
\Phi (A\Theta (x) - y) = A\ast (A - A\Theta )(x) + (A\ast  - A\ast 

\Phi )(A\Theta (x) - y).

Theorem 4.9 (convergence to a neighborhood of \^x). Let \epsilon > 0 and pick \delta as in (4.6).
Assume both the adjoint and forward operator are fit up to a \delta /4-margin, i.e.,

\| A\| X\rightarrow Y \| (A - A\Theta )(xn)\| Y < \delta /4, \| (A\ast  - A\ast 
\Phi )(A\Theta (xn) - y)\| X < \delta /4(4.8)

for all y and xn obtained during gradient descent over \scrL \Theta . Then eventually the gradient
descent dynamics over \scrL \Theta will reach an \epsilon neighborhood of the accurate solution \^x.

Proof. We apply 4.7, with the neighborhood U chosen as the \epsilon ball around \^x. Using
Lemma 4.8, we can bound

cos\Phi \geq 1 - 
\| A\| X\rightarrow Y \| (A - A\Theta )(x)\| Y + \| (A\ast  - A\ast 

\Phi )(A\Theta (x) - y)\| X
\| \nabla \scrL (x)\| X

\geq 1 - \delta /4 + \delta /4

\| \nabla \scrL (x)\| X
.

As long as \| x\Theta (t) - \^x\| X \geq \epsilon , by (4.6), we have \| \nabla \scrL (x)\| X > \delta and hence

cos\Phi \geq 1 - \delta /2

\delta 
> 0.

We can hence apply 4.7 to conclude the proof.
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Overall, we have thus shown that a sufficiently well-trained nonlinear corrected operator
A\Theta induces gradient dynamics \nabla \dagger \scrL \Theta that lead close to the accurate solution \^x.

We note that the main assumption in Theorem 4.9 is that the learned operator A\Theta has to
be sufficiently close to the accurate operator A throughout the minimization trajectory, in the
sense of (4.8). While this corresponds directly to the quantities of the loss functions that the
approximations A\Theta and A\ast 

\Phi were trained on, it includes any xn occurring during the gradient
descent dynamics. Thus, we will discuss the concept of adding exactly these samples xn to
the training set in the next chapter, effectively making our training loss function minimize
exactly the relevant quantities \| (A - A\Theta )(xn)\| Y and \| (A\ast  - A\ast 

\Phi )(A\Theta (xn) - y)\| X .

Remark 4.10. The above Theorem 4.9 makes use of both proximity of the forward opera-
tor as well as of the adjoints. While this is necessary to guarantee convergence of the gradient
descent dynamics to a neighborhood of the accurate solution, it is not strictly necessary to
guarantee proximity of the minimizers of \scrL \Theta and of \scrL . In fact, in Appendix B we show
that under certain assumptions a good forward approximation quality is sufficient to ensure
closeness of minimizers, without considering a specific optimization scheme. While this re-
sult is interesting from a theoretical viewpoint, Theorem 4.9 is essential for supporting and
explaining the experimental results in this study.

5. Computational considerations. In the following we will first address some details on
the training procedures and then continue to present the design of experiments to evaluate
the performance of the discussed approaches. In particular, as we mentioned above, in order
to ensure the convergence in Theorem 4.9, we need to make sure that the forward fit as well
as the backward fit in (4.8) are satisfied throughout the minimization process, which makes a
special recursive training of the corrections necessary.

5.1. Recursive training. Let us now address how to ideally choose the training sets for the
forward-adjoint correction to ensure a good fit of the forward correction F\Theta by minimizing
(4.1) and the adjoint correction G\Phi with (4.2). To create the training set, there are two
possibilities. Either we are given a set of measurements \{ yi, i = 1, . . . , N\} or, alternatively,
if we are given a set of samples in image space \{ xi, i = 1, . . . , N\} , then we need to create a
corresponding set of measurements by applying the accurate model yi = Axi + ei with the
addition of noise ei. Either way, given the set of measurements yi we need to train F\Theta and
G\Phi on a meaningful starting point for the gradient descent to solve the variational problem;
a natural candidate would be to choose the backprojection xi0 =

\widetilde A\ast yi.
Training the corrected operators A\Theta and A\ast 

\Phi with the samples \{ (xi0, Axi0)\} only yields
operator corrections that approximate A and A\ast well for samples x that are close to backpro-
jections of measurements. However, the purpose of this paper is to learn a correction of \widetilde A
that can be used within the variational problem to obtain a solution close to the one obtained
using the accurate operator A. We observe that training A\Theta on the backprojections xi0 =

\widetilde A\ast yi

only is not sufficient to achieve this goal. While this leads to A\Theta being a good approximation
to A for the first iterates in the gradient descent scheme, the approximation quality tends to
deteriorate for later iterates, making A\Theta not a good appproximation to A anymore. Such a
behavior is in fact what one would heuristically expect, as A\Theta has never been trained on later
iterates to match the accurate operator.
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This connects to the assumptions made in the convergence Theorem 4.9, where we assume
low approximation errors for both the forward and the adjoint at all iterates of the gradient
descent scheme. We hence need to ensure a uniformly low approximation error at any iterate
to be able to guarantee convergence and it is in particular not sufficient to ensure a low
approximation error at the initial point of the minimization of the variational problem only.

A natural solution to mitigate this problem is to include later iterates of the variational
problem into the training samples for the corrected operator. More precisely, given some
weights \Theta of the correction operator, denote by \{ xin\} the iterates obtained following the
dynamics

xin+1 = xin  - \mu 
\bigl[ 
A\ast 

\Phi (A\Theta (x
i
n) - yin) + \lambda \nabla R(x)

\bigr] 
,(5.1)

where \mu denotes the step size. We add these samples to the original training set \{ (xi, Axi)\} ,
i.e., we also train on \{ (xin, Axin)\} for all n < N\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} and i. Here N\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} is the maximal number of
gradient descent steps we take. This allows us to ensure that the corrections A\Theta , as well as
A\ast 

\Phi for the forward-adjoint method, are fit consistently well at any iterate xin of the gradient
descent dynamics.

A major drawback of this approach is the additional computational burden it incurs during
training. Obtaining the iterates of the minimization to solve the variational problem requires
performing the minimization at training time. To reduce the additional computational burden
one can make use of the fact that the gradient of the data term for the learned operator
correction A\Theta has to be computed for two different purposes. First, it is used to perform
minimization over the variational functional and, second to further train the A\Theta to better
match the accurate operator. One can hence perform this computation only once, using it for
both purposes. This reduces computational costs particularly when training on every iterate
of the minimization over the variational functional, in which case little overhead cost compared
to regular training is inflicted.

Additionally, the trajectory (5.1) depends on the network weights \Theta . The training samples
can hence change during training and convergence is not clear a priori. Empirically, we find
that training on the full trajectory (xin, Ax

i
n) for n < N\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} from the beginning tends to be

unstable, as this will lead to most training samples differing greatly from both the original
training distribution as well as the accurate trajectory we are finally interested in. There are,
however, two effective solutions to this problem: First, one could alternatively train on the
trajectory obtained when using the accurate operator A, avoiding instabilities in the beginning
of training. This, however, could lead to errors accumulating during training. We found that
the most effective solution is to have N\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} increase from 1 to some N\mathrm{m}\mathrm{a}\mathrm{x} during training.
With this approach, we start off by training on the original samples xi0 only and then add in
more samples from the trajectory as training proceeds. We have noticed that once trained
on backprojections, adding later iterates to the training set does not change the behavior of
the learned correction on backprojections by much. In this sense, one can interpret the latter
approach to recursive training as gradually extending the domain the correction is valid on,
without considerably changing the behavior of the correction on the part of the image domain
that it is already valid on. This heuristically explains why recursive training can be performed
very stably when gradually increasing N\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}.
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Phantom: x Accurate data: Ax Approximate data: \widetilde Ax
Figure 2. Illustration of the limited view imaging scenario under consideration. Left: numerical phantom

with a line detector (red line). Middle: ideal data from the accurate forward model. Right: data obtained with
an approximate model with clearly visible aliasing artefacts.

5.2. Experimental design. For a practical application we consider photoacoustic tomog-
raphy (PAT) in two dimensions; for more details on PAT see [6] and the discussion in Ap-
pendix A. Here, the measurement data are given as a set of time series in a limited view
geometry measured with a line detector at the surface, which we visualize as a space-time
image in Figure 2. In this limited view scenario, the reconstruction task is already a very
challenging inverse problem in itself even with the accurate operator available; we refer to
[30, 45] for details. Here, the accurate model A is given by a pseudospectral time-stepping
model [42, 43], whereas the approximate model \widetilde A is given by a regriding and fast Fourier
transform which neglects the effect of singularities and introduces systematic errors in the
forward mapping [11, 28]. In particular, to avoid singularities in the approximate model we
threshold incident waves with an angle up to \theta \mathrm{m}\mathrm{a}\mathrm{x} = 60\circ from normal incidence, which means
that this part of the data is inevitably lost. Nevertheless, the approximate forward model
still exhibits strong aliasing artefacts, as can be clearly seen in Figure 2 indicating that this
application is an ideal candidate for this study. For more details on the models, we refer
to the discussion in Appendix A. We developed the majority of code in Python using the
TensorFlow package and using the k-Wave MATLAB (R2018b) toolbox [42] for some calcu-
lations concerning the accurate operator. We used a single Quadro P6000 to conduct the
experiments.

Model corrections under consideration. We evaluate the forward only method with a gradi-
ent penalty term as described in section 3 as well as the forward-adjoint approach as outlined
in section 4.1 For both of these methods, we conduct experiments with a model trained on
back-projected measurements only and with a model that has been trained using recursive
training (section 5.1). As a baseline method, we compare this to the widely used AEM ap-
proach as outlined in section 2.1, a linear approach to model correction. We finally compare
this to reconstructions obtained with the uncorrected operator as well as to the reconstruction
the accurate operator yields. This allows us to assess how well various correction approaches
are able to correct the shortcomings of the uncorrected operator.

1Code is available at https://github.com/lunz-s/ModelCorrection
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Figure 3. Examples from the vessel set used for training of the model correction. The phantoms were
obtained from segmented CT scans to provide a realistic ground-truth image for photoacoustic imaging of vessel
structures.

Measurement setup. We consider a limited view problem in this study, where measurements
are only taken on top of the target with a line detector, as indicated in Figure 2. In particular,
we consider an image size of 64\times 64, the measurements are taken with a line detector of the
same width as the target, and t = 64 time points, resulting in a measurement space of the same
size, i.e., 64\times 64. The detector is modeled as a Fabry--P\'erot sensor [46] with wide bandwidth
and no directivity. Since both image and data space can be represented as a two-dimensional
image, it is reasonable to use the same network architecture for both spaces.

Training samples. For the evaluation of the various model correction methods, we utilize
two different sets of samples. First, a simple synthetic set of ``ball"" images, consisting of
circles of varying intensity in [0.75, 1], with fixed radius, but random location on an empty,
zero intensity background. We employ a total of 4096 ball samples for fitting the correction
and an additional 64 for evaluation. An example of a ball image and the corresponding
data are illustrated in Figure 2. Second, a realistic vessel set that has been obtained by
segmenting vessels from three-dimensional (3D) CT scans to provide realistic phantoms, see
[21] for details. For this study, the 3D volumes have been projected to two dimensions by a
maximum intensity projection and subsequently cropped to the intended target size; we note
that all samples are normalized between [0, 1]. Examples of the obtained vessel phantoms
are displayed in Figure 3. We use 2760 unique vessel phantoms for training, augmented by a
rotation by 90\circ for a training set of 5520 samples in total. We evaluate on a separate test set
containing 64 samples. All phantoms had a resolution of 642 and resolution in data space is the
same for both, correct and approximate model. The phantoms are used to generate synthetic
measurements yi := Axi+ ei by applying the accurate operator A and adding Gaussian white
noise at 1\% of the maximum value in measurement space.

Training scheme. For every measurement yi, we compute xi0 := 4 \cdot \widetilde A\ast y as an initial recon-

struction. We choose to rescale the adjoint \widetilde A\ast y by a factor of 4 as in our measurement setup
we typically have \| Ax\| Y \approx 1

2\| x\| X and \| A\ast y\| X \approx 1
2\| y\| Y . This is due to the fact that we

measure along a line on one side of the object only, hence recording only half the energy emit-
ted on the measurement device. This ensures that the average intensity of the backprojection
roughly matches the one of both the ground truth and the minimizer of the variational func-
tional. It allows us to keep the norm of the reconstruction approximately stable throughout
solving the variational problem (5.5) and hence makes operator approximations more robust
throughout the trajectory of minimizing (5.5).
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Given a set of training samples yi, we then train the forward approximation with the loss
term \sum 

i

\bigm\| \bigm\| \bigm\| F\Theta ( \widetilde Axi0) - Axi0

\bigm\| \bigm\| \bigm\| 
Y\underbrace{}  \underbrace{}  

\mathrm{F}\mathrm{o}\mathrm{r}\mathrm{w}\mathrm{a}\mathrm{r}\mathrm{d} \mathrm{L}\mathrm{o}\mathrm{s}\mathrm{s}

+
\bigm\| \bigm\| \bigm\| \Bigl( A\ast  - \widetilde A\ast 

\Bigl[ 
DF\Theta ( \widetilde Axio)\Bigr] \ast \Bigr) \Bigl( 

F\Theta ( \widetilde Axi0) - yi
\Bigr) \bigm\| \bigm\| \bigm\| 

X\underbrace{}  \underbrace{}  
\mathrm{A}\mathrm{d}\mathrm{j}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t} \mathrm{L}\mathrm{o}\mathrm{s}\mathrm{s}

,(5.2)

weighting the forward and adjoint loss equally. In the case of a forward-adjoint correction,
the forward approximation is trained using the loss\sum 

i

\bigm\| \bigm\| \bigm\| F\Theta ( \widetilde Axi0) - Axi0

\bigm\| \bigm\| \bigm\| 
Y
,(5.3)

while the adjoint is trained with the loss\sum 
i

\bigm\| \bigm\| \bigm\| \Bigl( G\Phi \circ \widetilde A\ast  - A\ast 
\Bigr) \Bigl( 

F\Theta ( \widetilde Axi0) - yi
\Bigr) \bigm\| \bigm\| \bigm\| 

X
.(5.4)

Note that the quasi-adjoint of the approximate operator A\ast 
\Phi := G\Phi \circ \widetilde A\ast as well as the

adjoint of the forward approximation in (5.2) is evaluated in direction r := F\Theta ( \widetilde Axi0)  - yi.
This loss is chosen to be consistent with the terms arising during a gradient descent based
optimization of (5.5), as shown in the previous chapters.

If recursive training is applied, we additionally compute the iterates of a gradient descent
scheme on the penalty functional

argmin
x

\| A\Theta (x) - yi\| + \lambda R(x).(5.5)

All losses are summed over the later iterates xin with n \geq 0, instead of taking the initial point
xi0 only. To make recursive training stable, the number of recursive steps considered during
training is gradually increased to the maximal value, instead of beginning by training on the
full trajectory from the start as outlined in section 5.1.

Network details. The networks F\Theta and G\Phi are built with a U-Net [34] architecture, that
has been particularly popular in the image reconstruction community including applications
to PAT [3, 12, 15] and other modalities [16, 19, 22]. We follow the standard architecture with 4
downsampling and the same amount of upsampling blocks, each containing two convolutional
layers with filters of size 5\times 5. We employed average pooling for downsampling and transpose
convolutions for upsampling layers. We note, that the proposed framework is agnostic to the
employed architecture; we expect similar results with other sufficiently expressive network
architectures.

Solving the variational problem. We employ gradient descent with a fixed step size of 0.2
for all experiments to solve the variational problem (5.5), which we have seen can lead to a
near-optimal reconstruction given sufficient approximation quality in section 4.2. We addi-
tionally add a positivity constraint xn \geq 0 everywhere to the minimization that we incorporate
using projected gradient descent. This means we cut the negative part of every iterate to 0
everywhere, as negative values are nonphysical.
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As regularization functional R we choose the pseudo-Huber varation functional

R(x) :=
\sum 
i,j

\delta 

\Biggl[ \sqrt{} 
1 +

1

\delta 2
[(x[i+ 1, j] - x[i, j])2 + (x[i, j + 1] - x[i, j])2] - 1

\Biggr] 
(5.6)

to reconstruct x \in \BbbR 64\times 64. Here x[i, j] denotes the pixel of x at location i along the vertical
and j along the horizontal axis. This functional approximates the L2-norm of the gradient of
the reconstruction for small values and the L1-norm for large values of the gradient, coinciding
with total variation (TV) in the limit \delta \rightarrow 0. The parameter \delta specifies the characeristic length
at which the behavior of the regularization functional changes from approximating L2 to L1.
We chose \delta = 0.01 for all experiments. We remark that this functional is strongly convex on
all bounded domains for all \delta > 0, with the strong convexity constant depending on \delta and
the diameter of the imaging domain. The latter is in our case specified by the constraint
x[i, j] \in [0, 1].

The regularization parameter \lambda is tuned for every experiment and baseline individually
via a grid search over a logarithmically evenly spaced grid with grid points being a factor of
log(10) apart. The best parameter was chosen in terms of L2 distance to the ground-truth
image.

6. Computational results.
Synthetic ball phantoms. To evaluate the proposed approaches we solve the variational

problem employing the various approaches for model correction for a set of samples generated
from a test set that is different from the samples used for fitting the correction. We use the
same Huber regularization functional and regularization parameter as discussed in the last
paragraph.

First, we investigate the correction accuracy in terms of the alignment of the gradient of
the data fidelity term with the accurate gradient A\ast (Axn  - y) throughout the minimization
of the variational functional in Figure 4. As a notion of alignment we consider

cos\Phi v(x) =

\Bigl\langle 
A\ast 

\Bigl( 
Axn  - y

\Bigr) 
,
\Bigl( 
G\Phi \circ \widetilde A\ast 

\Bigr) \Bigl( 
F\Theta ( \widetilde Ax) - y

\Bigr) \Bigr\rangle 
X\bigm\| \bigm\| \bigm\| A\ast 

\Bigl( 
Axn  - y

\Bigr) \bigm\| \bigm\| \bigm\| 
X

\bigm\| \bigm\| \bigm\| \Bigl( G\Phi \circ \widetilde A\ast 
\Bigr) \Bigl( 

F\Theta ( \widetilde Ax) - y
\Bigr) \bigm\| \bigm\| \bigm\| 

X

(6.1)

in the case of the forward-adjoint method. For the forward only and AEM methods, the
expression

\bigl( 
G\Phi \circ \widetilde A\ast \bigr) \bigl( F\Theta ( \widetilde Ax)  - y

\bigr) 
is replaced by the appropriate gradient of the corrected

data fidelity term. Equation (6.1) is a slight deviation from (4.7) used in the theory section.
This is to ensure good comparability with the baseline AEM and better interpretability by
rescaling the alignment with the norm of the approximate gradient. This also makes different
choices of regularization parameters more comparable. In the theory section we instead rescale
with the norm of the accurate gradient only, making the proofs more straightforward.

We note that all correction methods apart from the AEM approach start at a high align-
ment of > 0.8 at the first iterate. However, only the forward-adjoint based methods are able
to achieve an alignment of > 0.95 at the first iterate. Forward only approaches that rely on
fitting a correction in measurement space only are limited by the range of the adjoint \widetilde A\ast as
discussed in section 4.
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(a) Full trajectory (b) First 500 steps

Figure 4. Alignment (6.1) of approximate gradient to the gradient of the accurate data term A\ast (Axn  - y)
for each approach on the ball test set of 64 samples. The alignment is recorded over all minimization steps for
solving the associated variational problem. On the left (a) for the full trajectory and on the right (b) for the
first 500 steps.

However, the alignment starts decreasing rapidly over the minimization of the variational
problem, dropping below 0 for the forward-adjoint method before the 200th iterate. The
recursive versions of the forward and forward-adjoint methods, as discussed in section 5.1, are
able to mitigate some of this shortcoming. While the alignment between accurate gradient
and the correction also declines throughout the minimization of the variational problem when
employing recursive training, the decline is significantly less steep and occurs at a later stage
of the minimization. We also note that the alignment never drops under 0.2 for recursively
trained corrections.

The benchmark AEM method is not able to correct the gradient as accurately as any of
the methods we discussed for the first iterates of the variational problem. However, it does
not exhibit a decline of the alignment as drastic as any of the other methods throughout the
minimization process. This can be explained by the lower expressive power of AEM compared
to the corrections based on neural networks that does not allow the method to fit the accurate
gradient as well for early iterates but prevents overfitting on later iterates, leading to the
method being stable throughout the minimization of the variational functional.

The different behaviors of forward and forward-adjoint methods as well as their recursive
counterparts is investigated in Figure 5. We note that in terms of the forward approximation
error, applying recursive training makes the key difference in terms of keeping a low error
throughout gradient descent. For the adjoint approximation error we note that methods
based on the forward scheme that fit a single operator are not able to achieve low error,
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(a) Relative approximation error of forward oper-
ator

(b) Relative approximation error of adjoint opera-
tor

Figure 5. Approximation error of the model correction compared to the accurate operator on the ball test
set of 64 samples, tracked throughout the first 300 steps of the gradient descent scheme. Left (a): relative error
of the forward approximation as defined in (5.3). Right (b): relative error for the adjoint, as defined for the
forward only in (5.2) and for the forward-adjoint method in (5.4).

even at the first iterate due to the fundamental limitations of the method. Forward-adjoint
methods on the other hand are able to fit the accurate adjoint well at the first iterates, but
also suffer from deteriorated approximation quality for later steps.

In Figure 6, we see evolution of the data term \| Axn  - y\| Y evaluated using the accurate
operator A in order to test if the corrections minimize the original variational problem. We
note that both recursive methods are able to effectively minimize the data term quickly, with
both converging stably to their respective minimal value. This empirical observation shows
that the learned reconstructions in fact lead to a variational energy that satisfies Lemma 4.4 to
ensure closeness of minimizer. We note that forward-adjoint recursive is able to achieve a lower
data loss than its forward only counterpart, which is consistent with the behavior observed in
Figure 4. It is interesting to note, that both methods are able to minimize the accurate data
term significantly better than the baseline AEM. When omitting recursive training both the
forward only and the forward-adjoint algorithm are not able to minimize the accurate data
term well.

Finally, we evaluate the model correction in terms of the distance of the reconstruction
to the ground-truth image, measured by the relative L2 error shown in Figure 7. We note
that all approximation approaches outperform the uncorrected operator in this metric. Both
corrections, forward and forward-adjoint, without recursive training lead to a decrease in
reconstruction error reconstruction quality for the first 300 optimization steps, stagnating
or even deteriorating afterwards. This is again consistent with the findings in Figure 4,
which show that the gradient generated by these methods does not align with the accurate

D
ow

nl
oa

de
d 

04
/2

6/
21

 to
 1

93
.6

0.
24

0.
99

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

116 LUNZ, HAUPTMANN, TARVAINEN, SCH\"ONLIEB, ARRIDGE

Figure 6. True data term \| Axn  - y\| Y eval-
uated for all methods on the ball test set of 64
samples, tracked throughout the gradient descent
scheme.

Figure 7. Relative reconstruction error (L2)
for all methods on the ball test set of 64 samples,
tracked throughout the gradient descent scheme.

gradient any more at this point of the minimization. The recursive counterparts of the forward
and forward-adjoint method produce considerably better results, with the recursive forward-
adjoint method generating reconstructions that are nearly of the same quality as the ones
generated by the accurate operator. The baseline with AEM is converging more slowly than
any of the other methods but is able to produce high-quality results after 4000 gradient descent
steps that are on par with the forward recursive method, but are significantly outperformed
by the recursive forward-adjoint method.

For a qualitative evaluation, we show obtained reconstructions in Figure 8 for all methods
discussed and two samples with different behavior. In the first example, where the ball is close
to the line detector, we note that all methods are able to correct the errors introduced by the
approximate operator to some extent. However, both the forward and forward-adjoint method
introduce background artefacts when not trained recursively. These artefacts disappear when
recursive training is applied, leading to near perfect reconstructions. Compared to AEM as
baseline, which is able to correct the approximate operator without introducing background
artefacts, the correction by AEM introduces blurred edges of the ball that are not observed
by any of the neural network based corrections we are investigating. The second sample is
particularly more challenging, with the ball being far from the detector exhibiting stronger
limited view artefacts and consequently the approximate operator introduces severe artefacts if
uncorrected. For the corrections without recursive training we see again that both approaches,
forward and forward-adjoint, introduce background artefacts. For the forward method, these
artefacts cannot be suppressed by applying recursive training, leaving a severe artefact at the
boundary of the domain. Only the recursive forward-adjoint is able to produce a reconstruction
that is nearly on par with the reconstruction obtained with the accurate operator and that
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(a) Reconstructions for phantom close to the line detector

(b) Reconstructions for phantom far from the line detector

Figure 8. Reconstructions for the various model correction algorithms for two samples from the ball set.
We show the results after 4000 steps of gradient descent. Huber regularization is used. Top (a): Phantom close
to the detector, which corresponds to an easy setting for limited view PAT. Bottom (b): Phantom far from the
the detector, which corresponds to a very challenging setting.

does not exhibit any obvious artefacts. The baseline with AEM also introduces background
artefacts leaking from the ball, but those are more structured and less severe than those of all
other methods apart from the forward-adjoint recursive approach which gives the best visual
results in this setting as well. The visual quality of the reconstructions hence coincides with
the quantitative results discussed in Figure 7.

Figure 9 visualizes the effect of the forward-adjoint recursive approach on the ball images,
showing Ax0 \widetilde Ax0, and A\Theta (x0) as well as the gradients of the data term for each of the
operators A, \widetilde A, and A\Theta . The visualizations are computed for sample (b) in Figure 8 on
the ball samples. We see that the forward-adjoint approach is in fact able to correct for
approximation artefacts both in the forward operator as well as in its adjoint, leading to a
good approximation of the accurate gradient of the data term.

Vessel phantoms. The results on the vessel phantoms quantitatively match the overall be-
havior observed on the ball set. The alignment, as shown in Figure 10, is again initially higher

D
ow

nl
oa

de
d 

04
/2

6/
21

 to
 1

93
.6

0.
24

0.
99

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2021 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

118 LUNZ, HAUPTMANN, TARVAINEN, SCH\"ONLIEB, ARRIDGE

(a) Measurements computed at the initial reconstruction for the exact, approxi-

mate, and corrected operators. From left to right Ax0, \widetilde Ax0, A\Theta (x0).

(b) Gradients of the data term, computed at the initial reconstruction for the
exact, approximate, and corrected operators.

Figure 9. Estimated measurements and gradients at initialization of the gradient descent scheme for a
sample from the ball images.

with forward-adjoint methods achieving higher values as forward only methods. If no recur-
sive training is applied, alignment declines very quickly. AEM is again generating gradients of
comparatively low initial alignment, that however stays relatively steady throughout solving
the variational problem. We note that the overall alignment is significantly lower than in the
case of the ball samples, reflecting the additional difficulty of the vessel set.

The relative error of the reconstructions compared to the ground truth can be seen in
Figure 11. We again see both the forward and forward-adjoint methods fail to improve recon-
struction quality further early into the minimization process if recursive training is omitted.
In case recursive training is applied, both methods lead to a clear improvement over the uncor-
rected operator, with the forward-adjoint approach again performing considerably better than
the forward only. On the vessel samples we however note a considerably larger gap between
the forward-adjoint correction and the accurate operator that is caused by the extremely
challenging nature of the vessel set. The AEM baseline converges slowly on the vessels, an
indication that the estimated covariance matrix is fairly ill-conditioned. We hence addition-
ally report the reconstruction quality at convergence, which we observed after 20000 steps of
gradient descent. While this is a competitive reconstruction, it is still outperformed slightly
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Figure 10. Alignment (6.1) of approximate
gradient to the gradient of the accurate data term
A\ast (Axn  - y) for each method on the vessel test
set with 64 samples, recorded over the 250 steps of
solving the associated variational problem.

Figure 11. Relative reconstruction error (L2)
for all methods on the vessel test set with 64
samples, tracked throughout the gradient descent
scheme. 250 steps of gradient descent were per-
formed for all methods but AEM, where 20000
steps were taken.

by the recursive forward-adjoint method. We remark that we have applied early stopping for
all other methods on the vessel samples.

We present reconstructions for all discussed methods for two samples in Figure 12. We
note for the first sample that the vessel structure at the right of the image completely disap-
pears when using the uncorrected approximation. In fact, the corresponding measurement is
severely reduced due to the thresholding of incident waves in the approximate model. Hence,
no correction method is able to fully recover the vessel structure at the right of the first sample,
with AEM, forward method, and forward-adjoint method coming closest. For all correction
methods we observe a deterioration in reconstruction quality compared to the accurate opera-
tor. We note that the recursive forward method seems to lead to striping artefacts. Consistent
with the quantitative results in Figure 11 the forward-adjoint recursive reconstructions are
of the highest visual quality compared to the other reconstructions using a model correction,
leading to sharper results than the AEM baseline and to fewer artefacts than methods based
on the forward only approach or those omitting recursive training. We remark that, up to
some extent, perceived differences in smoothness can also be caused as the regularization
parameter has been optimized for all methods individually and hence might differ slightly
between reconstructions.

To this end, we note that the training set with a total of 2760 samples (5520 with rotations)
is fairly small when taking into account the complexity of the vessel structures; see, for
instance, the discussion with respect to AEM in [35]. It is hence possible that the remaining
gap in reconstruction quality to the accurate operator could be closed further by using a
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(a) Reconstructions for first vessel phantom

(b) Reconstructions for second vessel phantom

Figure 12. Reconstructions on vessels using the various operator corrections. We show the results after
250 iterations of gradient descent for all methods but AEM, for which 20000 iteration steps were taken. Huber
regularization is used.

more extensive training set. However, we expect that the gap cannot be closed completely
on samples with a complexity comparable to the vessel phantoms as too much information
might be lost in the thresholding step of the approximate operator that cannot be recovered
even when taking into account the structure of the samples with highly parameterized learned
corrections. This underlines the necessity of a statistical correction as discussed throughout
section 2 to compensate for lost kernel directions in the approximate operator.

Model transfer between vessel and ball phantoms. In this paragraph we investigate how well
the operator corrections trained on either the ball or the vessel samples generalize to the other
of the two data sets. In particular, we discuss using models trained on balls to reconstruct
vessels and vice versa. The aim of these experiments is to obtain a first understanding on how
well-trained model corrections generalize to new data sets in general, especially if the new set
is very different from the training data in terms of image characteristics.

When using models trained on the ball samples and tested on vessel images, we notice that
the model gives reasonable corrections at the initialization of the variational scheme for the
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Figure 13. Models trained on vessel samples, evaluated on ball samples. From left to right: Ground-truth
image, reconstruction using the uncorrected operator, reconstruction using a recursive forward-adjoint correction
with the same TV parameter as used on vessel data, reconstruction using a recursive forward-adjoint correction
with new optimal TV parameter.

vessel samples, yielding corrected gradients. Nevertheless, the correction quality deteriorated
rapidly during the gradient descent steps and the final reconstruction was not satisfactory
compared to reconstructions obtained with the uncorrected approximate operator \widetilde A. We
hypothesize that the ball data were too distinct from the vessel samples and that the structure
of the ball data were too simple for the learned model to perform reasonably on the much
more complicated vessel data. In particular, the learned corrections were potentially fit very
tightly to data and measurements induced by the ball phantoms that do not contain the same
level of complexity as the vessel phantoms. Heuristically speaking, the data manifold of the
ball samples seems to be too low dimensional to generalize to other data.

On the other hand, when using the forward-adjoint recursive model trained on the vessel
samples on the ball samples, we obtained results that are clear improvements over reconstruc-
tions obtained with the uncorrected operator and are even comparable to the nonrecursively
trained methods on the ball data. We do, however, not match the performance of the forward-
adjoint recursive model trained on the ball samples themselves. Figure 13 shows reconstruc-
tions on a ball sample for various methods trained on the vessel samples. The reconstructions
show a well-localized ball reconstruction with fairly sharp edges even in the challenging case
of the ball sample located far from the detector plate. The results can be compared to results
obtained with methods trained on the ball samples, as shown in Figure 8. The visual assess-
ment of reconstruction quality matches the quantitative results in terms of L2 error as shown
in Table 2.

Finally, we note in both Figure 13 and Table 2 that adopting the regularization parameter
\lambda of the forward-adjoint correction trained on vessel samples to a new optimal value for
the ball data yields considerable improvements in performance. This demonstrates one of the
main advantages of explicit corrections over their implicit counterparts, as separating between
model correction and regularization allows for an adaption of the regularization parameter to
the task, independently of the model correction learned.

7. Conclusion. In this paper, we have introduced various approaches to learn a data-
driven explicit model correction for inverse problems to be employed within a variational
reconstruction framework. We have investigated several strategies to learn such a correction,
starting with a simple forward correction for which we pointed out some fundamental limita-
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Table 2
Performance of the recursive forward-adjoint correction on ball samples. We evaluate the performance of

models trained on vessel samples and compare to models trained on ball samples. Results are reported in terms
of the L2 error compared to the ground-truth image.

Training data L2 error

Accurate operator - 0.11
Approximate operator - 0.55

Forward-adjoint balls 0.15

For.-adj. (old TV param.) vessels 0.40
For.-adj. (new TV param.) vessels 0.35

tions. In particular, we observed that this approach is limited by the range of the adjoint of
the approximate operator when employed in a gradient descent scheme and is therefore un-
able to fully correct all modeling errors. To mitigate this, we have proposed a forward-adjoint
correction as an alternative approach, overcoming these limitations by fitting an independent
adjoint correction.

To ensure a model correction that can be employed throughout the optimization process
and avoid overfitting the initial reconstruction, we proposed to augment all methods with a
recursive training scheme. For the recursive forward-adjoint correction we provided a theoret-
ical convergence analysis to show that the method approximates the accurate solution when
trained to a sufficiently low loss. Finally, we have shown the potential of our approach on
the task of limited view PAT, demonstrating our theoretical considerations in practice and
showing improved results compared to the commonly used AEM.

For the data chosen, the algorithm can be trained very quickly, requiring 12h for non-
recursive experiments and around 16h for their recursive counterparts. For images larger
than the 64\times 64 format used in the paper, the number of operations scales linearly with the
number of pixels and hence quadratically with resolution in 2 dimensions and cubically in 3
dimensions. The actual increase in computational time might scale lower than the increase in
operators as a larger number of operations per layer increases the potential for parallelization.
The number of network parameters, however, does not necessarily change with resolution.
Higher resolutions might make a deeper architecture appropriate, but the increase in weights
caused by this would typically be strongly sublinear.

This work is orthogonal to previous attempts at using neural networks to learn operator
corrections that were exclusively focused on the idea of implicit model corrections, learning
the correction operator, and a reconstruction prior simultaneously in an end-to-end trained
reconstruction network. While this approach comes with advantages in terms of performance,
our explicit model correction allows us to flexibly use any prior model alongside the corrected
operator and can be integrated in the well-established framework of variational regularization.
Furthermore, our work unveils some of the challenges in model correction that are hidden in
implicit schemes. Our findings can be used to inspire the design of novel implicit algorithms
and allows for an analysis of implicit correction in future studies. In particular, our observa-
tions on the limitations of the range of the adjoint of the approximation motivates the use of
corrections in both reconstruction and data space for implicit model correction, motivating
the use of algorithms such as LPD [2].
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In future work one could apply the proposed method to different fields of application, such
as CT. In this application, the accurate model can be obtained by expensive photon-level
Monte Carlo simulations, whereas a computationally efficient approximation is given by the
widely used ray transform. In general, applications to inverse problems involving nonlinear
operators are an interesting direction deserving further study; we refer to a related study
exploring first ideas in this direction [40]. A class of very challenging applications are settings
where we do not have explicit access to the accurate forward operator, but instead have access
to empirical measurements only. Examples of such problems are tomography with slightly
wrong estimated angles or deconvolution problems with errors in the point-spread function.
These problems differ from the setting considered in this paper, where explicit access to the
accurate operator was given and the approximation was performed to overcome computational
constraints. In particular, the concept of recursive training, as presented here, requires explicit
access to the accurate operator and is thus not readily applicable for problems where we have
access to empirical measurements only, making them particularly challenging. We believe
that in such settings, alternate training regimes that are not fully supervised and make use of
secondary measures will be needed, estimating the approximation error from the data itself.

Finally, we mention a possible combination of the proposed approach with AEM tech-
niques. Since the latter, after training, yields a multivariate normal distribution as an estimate
of the distribution of model errors it becomes increasingly unreliable as the non-Gaussianity of
the accurate distribution increases. However, after an initial nonlinear correction of the form
A\Theta described here, the AEM could be reestimated using such a model. Commensurately, the
estimated statistics of the model error from the AEM could be used in place of the simple
L2-loss used in the training in (5.2) and (5.3) for example (i.e., the norm implied in the space
Y ). A possible future research direction could therefore be to iterate these approaches with
a view to obtaining a more accurate probabilistic estimate of the eventual remaining model
errors.

Appendix A. An approximate model for photoacoustic tomography. Here we discuss
the accurate and approximate model as previously used in [20]. In PAT a short pulse of
near-infrared light is absorbed by chromophores in biological tissue. For a sufficiently short
pulse, the quantity of interest will result as a spatially varying pressure increase x, which will
initiate an ultrasound pulse (photoacoustic effect), that then propagates to the tissue surface.
The measurement consists of the detected waves in space-time at the boundary of the tissue;
this set of pressure time series constitutes the measured photoacoustic data y.

For the forward model, this acoustic propagation is commonly modeled by an initial value
problem for the wave equation [11],

(A.1) (\partial tt  - c2\Delta )p(x, t) = 0, p(x, t = 0) = x(x), \partial tp(x, t = 0) = 0, with x \in \BbbR 2.

The measurement is then modeled as a linear operator \scrM acting on the pressure field p(x, t)
restricted to the boundary of the computational domain \Omega and a finite time window

(A.2) y = \scrM p| \partial \Omega \times (0,T ).

Together, (A.1) and (A.2) define the linear forward model that we consider in this study:

(A.3) Ax = y
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from initial pressure x to the measured time series y. This accurate forward model can be
simulated by a pseudospectral time-stepping model as outlined in [42, 43].

For the approximate model, we can exploit the fact that in our case the measurement
points lie on a line (x2 = 0) outside the support of x; the pressure there can be related to x
by [11, 28]

p(x1, t) =
1

c2
\scrF k1 \{ \scrC \omega \{ B(k1, \omega )\~x(k1, \omega )\} \} ,(A.4)

where \~x(k1, \omega ) is obtained from \^x(k) via the dispersion relation (\omega /c)2 = k21 + k22 and \^x(k) =
\scrF \bfx \{ x(x)\} is the 2-dimensional Fourier transform of x(x). \scrC \omega is a cosine transform from \omega 
to t, \scrF k1 is the 1-dimensional inverse Fourier transform from k1 to x1 on the detector. The
weighting factor,

B(k1, \omega ) = \omega /

\biggl( 
sgn(\omega )

\sqrt{} 
(\omega /c)2  - k21

\biggr) 
,(A.5)

contains an integrable singularity which means that if (A.4) is evaluated by discretization
on a rectangular grid (and thus enabling the application of FFT for efficient calculation),
then aliasing in the measured data p(x1, t) results. Consequently, evaluating (A.4) using
FFT leads to a fast but approximate forward model. In fact, we can control the degree of
aliasing, by avoiding the singularity, that means in practice all components of B for which
k21 > (\omega /c)2 sin2 \theta \mathrm{m}\mathrm{a}\mathrm{x} are set to zero. This is equivalent to assuming only waves arriving at
angles up to \theta \mathrm{m}\mathrm{a}\mathrm{x} from normal incidence are detected. We note, that there is a trade-off:
the greater the range of angles included, the greater the aliasing. Finally, this results in a
thresholded weighting factor \widetilde B and hence the relation (A.4) using \widetilde B defines the approximate
model for this study: \widetilde Ax = y.

Appendix B. Addition to theoretical results. In this section, we only investigate the
question of closeness of minimizers, without investigating if the minimizers of \scrL \Theta ---that in-
volves a nonlinear operator in the data term---can be identified efficiently using a gradient
descent based algorithm. To answer this question, we will assume that the learned corrected
operator A\Theta approximates the ground-truth operator A sufficiently well, uniformly on some
manifold \scrD that contains the minimizer of \scrL . These assumptions represent the situation of
a well-fit forward approximation on the data manifold \scrD that we assume all relevant recon-
structions to lie on.

While it is difficult to check these assumptions in practice, the purpose of this discussion
is to give a more complete theoretical view of the problem at hand, demonstrating that
under sufficient assumptions closeness of forward operators is sufficient to deduce closeness of
minimizers. However, this does not guarantee that the minimum can be found with a gradient
descent algorithm or that a gradient descent algorithm even stays on the manifold \scrD of good
approximation quality. As a theoretical underpinning for the experiments conducted in this
paper, Theorem 4.9 should hence instead be considered as a the main theorem.

Proposition B.1 (proximity of minimizers). Denote by \scrD \subset X the manifold of possible
reconstructions that the operator approximation was trained on using empirical risk mini-
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mization (4.1). Let \scrL be strongly convex. Assume further that \scrD and the measurement noise
is bounded. Hence for any y = Ax1 + \epsilon for some x1 \in \scrD and for any x2 \in \scrD we have
\| Ax2  - y\| Y \leq C (boundedness). Let \epsilon > 0. Denote by \delta the corresponding quantity as in
Lemma 4.4; without loss of generality let \delta \leq 32C2. Assume further that A\Theta has been trained
such that supx\in \scrD \| A\Theta (x) - Ax\| Y \leq \delta /4C. Denote by

\^x := argmin
x

\scrL (x), \^x\Theta \in argmin
x

\scrL \Theta (x),

the reconstructions computed via the variational problem using either the accurate operator A
or the corrected operator A\Theta , respectively. Note that the minimizer is unique for the functional
\scrL by strong convexity, but not necessarily for the functional \scrL \Theta . Then for any y \in Br(0) that
is such that both \^x, \^x\Theta \in \scrD , we have

\| \^x - \^x\Theta \| X < \delta .

Proof. First note that | \scrL \Theta (x) - \scrL (x)| \leq \delta /2 for any x \in \scrD , as

| \scrL \Theta (x) - \scrL (x)| = 1

2

\bigm| \bigm| \| A\Theta (x) - y\| 2Y  - \| Ax - y\| 2Y
\bigm| \bigm| 

\leq \| Ax - y\| Y \| Ax - A\Theta (x)\| Y +
1

2
\| Ax - A\Theta (x)\| 2Y

\leq C \cdot \delta 

4C
+ \delta 

1

2

32C2

(8C)2
= \delta /2

By taking the minimum, this in particular implies that

| \scrL \Theta (\^x\Theta ) - \scrL (\^x)| \leq \delta /2.

We conclude via

| \scrL (\^x\Theta ) - \scrL (\^x)| \leq | \scrL (\^x\Theta ) - \scrL \Theta (\^x\Theta )| + | \scrL \Theta (\^x\Theta ) - \scrL (\^x)| \leq \delta /2 + \delta /2 = \delta ,

which finishes the proof using (4.5).

Remark B.2. The assumption that y is such that \^x, \^x\Theta \in \scrD , can be interpreted as a
necessity for y to have emerged from an underlying image that is close to the manifold of
reconstructions \scrD that the correction A\Theta has been trained on. Put differently, we require y
to be an actual realistic measurement, similar to those used to train the model correction A\Theta .
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