362 research outputs found

    Cohesion and adhesion properties of modified water glass with colloidal solutions of ZnO

    Get PDF
    The article discusses the issue of the influence of colloidal solutions of nanoparticles of ZnO obtained using original method on physical and chemical properties (cohesions, adhesion, wettability) of water glass. Adhesion and cohesion strength has been determined on the basis of own methodology of measurement using a special apparatus. The results of the above measurements have been supplemented with selected measurements of quartz wettability by the modified binder. Also, exemplary results have been presented of tests involving basic properties of moulding sans containing an addition of the aforementioned binder. In conclusions, the influence of binder modification on the properties of moulding sands have been presented

    Wind Tunnel Tests of Evolved Mars Tumbleweed Concepts

    Get PDF
    This paper summarizes the testing conducted in the Basic Aerodynamics Research Tunnel (BART) at NASA Langley Research Center (LaRC) to measure the drag properties of evolved Tumbleweed rover designs

    Cohesion and adhesion properties of modified water glass with colloidal solutions of ZnO

    Get PDF
    The article discusses the issue of the influence of colloidal solutions of nanoparticles of ZnO obtained using original method on physical and chemical properties (cohesions, adhesion, wettability) of water glass. Adhesion and cohesion strength has been determined on the basis of own methodology of measurement using a special apparatus. The results of the above measurements have been supplemented with selected measurements of quartz wettability by the modified binder. Also, exemplary results have been presented of tests involving basic properties of moulding sans containing an addition of the aforementioned binder. In conclusions, the influence of binder modification on the properties of moulding sands have been presented

    Nitric Oxide Signaling Modulates Synaptic Transmission during Early Postnatal Development

    Get PDF
    Early γ-aminobutyric acid mediated (GABAergic) synaptic transmission and correlated neuronal activity are fundamental to network formation; however, their regulation during early postnatal development is poorly understood. Nitric oxide (NO) is an important retrograde messenger at glutamatergic synapses, and it was recently shown to play an important role also at GABAergic synapses in the adult brain. The subcellular localization and network effect of this signaling pathway during early development are so far unexplored, but its disruption at this early age is known to lead to profound morphological and functional alterations. Here, we provide functional evidence—using whole-cell recording—that NO signaling modulates not only glutamatergic but also GABAergic synaptic transmission in the mouse hippocampus during the early postnatal period. We identified the precise subcellular localization of key elements of the underlying molecular cascade using immunohistochemistry at the light—and electron microscopic levels. As predicted by these morpho-functional data, multineuron calcium imaging in acute slices revealed that this NO-signaling machinery is involved also in the control of synchronous network activity patterns. We suggest that the retrograde NO-signaling system is ideally suited to fulfill a general presynaptic regulatory role and may effectively fine-tune network activity during early postnatal development, while GABAergic transmission is still depolarizing

    Synthetic Culture Media Evaluated for the Detection of Coliform Bacteria in Milk, Cheese and Egg Melange

    Full text link
    Simple synthetic culture media of liquid and solid form (X broth and X agar) were tested for selective isolation of coliform bacteria. Selectivity is based on the ability of coliform bacteria to grow when the minimal medium contains simple inorganic substances as nitrogen and carbon supply. Selectivity of the media was tested by inoculation of pure cultures of different microbes belonging to the genera of Staphylococcus, Bacillus and Pseudomonas and the family Enterobacteriaceae and was found to be complete in this range. The comparative investigation of milk, camembert cheese and egg melange samples in the traditional and new media proved good applicability of X broth and X agar for an effective and selective detection of coliform bacteria. When testing pasteurized milk samples, X agar detected coliforms in significantly higher counts than violet red-bile-lactose agar

    Cannabinoid-mediated short-term plasticity in hippocampus

    Get PDF
    Endocannabinoids modulate both excitatory and inhibitory neurotransmission in hippocampus via activation of pre-synaptic cannabinoid receptors. Here, we present a model for cannabinoid mediated short-term depression of excitation (DSE) based on our recently developed model for the equivalent phenomenon of suppressing inhibition (DSI). Furthermore, we derive a simplified formulation of the calcium-mediated endocannabinoid synthesis that underlies short-term modulation of neurotransmission in hippocampus. The simplified model describes cannabinoid-mediated short-term modulation of both hippocampal inhibition and excitation and is ideally suited for large network studies. Moreover, the implementation of the simplified DSI/DSE model provides predictions on how both phenomena are modulated by the magnitude of the pre-synaptic cell's activity. In addition we demonstrate the role of DSE in shaping the post-synaptic cell's firing behaviour qualitatively and quantitatively in dependence on eCB availability and the pre-synaptic cell's activity. Finally, we explore under which conditions the combination of DSI and DSE can temporarily shift the fine balance between excitation and inhibition. This highlights a mechanism by which eCBs might act in a neuro-protective manner during high neural activity

    Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gamma-band oscillations recorded from human electrophysiological recordings, which may be associated with perceptual binding and neuronal connectivity, have been shown to be altered in people with autism. Transient auditory gamma-band responses, however, have not yet been investigated in autism or in the first-degree relatives of persons with the autism.</p> <p>Methods</p> <p>We measured transient evoked and induced magnetic gamma-band power and inter-trial phase-locking consistency in the magnetoencephalographic recordings of 16 parents of children with autism, 11 adults with autism and 16 control participants. Source space projection was used to separate left and right hemisphere transient gamma-band measures of power and phase-locking.</p> <p>Results</p> <p>Induced gamma-power at 40 Hz was significantly higher in the parent and autism groups than in controls, while evoked gamma-band power was reduced compared to controls. The phase-locking factor, a measure of phase consistency of neuronal responses with external stimuli, was significantly lower in the subjects with autism and the autism parent group, potentially explaining the difference between the evoked and induced power results.</p> <p>Conclusion</p> <p>These findings, especially in first degree relatives, suggest that gamma-band phase consistency and changes in induced versus induced power may be potentially useful endophenotypes for autism, particularly given emerging molecular mechanisms concerning the generation of gamma-band signals.</p

    Two Distinct Modes of Hypoosmotic Medium-Induced Release of Excitatory Amino Acids and Taurine in the Rat Brain In Vivo

    Get PDF
    A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo
    corecore