366 research outputs found

    Isolation of modulators of Organic Anion Transporting Polypeptides (OATPs) from Rollinia emarginata Schlecht (Annonaceae)

    Get PDF
    Comparative Medicine - OneHealth and Comparative Medicine Poster SessionOrganic Anion Transporting Polypeptides (OATPs) comprise a superfamily of sodium-independent membrane transporters which are involved in transporting numerous endogenous and exogenous substances. OATPs are expressed in different tissues such as intestine, liver, kidney and brain, and are responsible for the uptake of important drugs including cholesterol-lowering agents (statins), endothelin receptor antagonists (sartans), the anticancer drugs methotrexate, SN-38, paclitaxel and docetaxel, as well as the antibiotic rifampicin. Through a strategic collaboration, we search for novel small molecules from the organic extract of Rollinia emarginata Schlecht. (Annonaceae) that interact with the liver specific OATP1B1 and OATP1B3 applying a bioassay guided isolation approach. The organic extract was fractionated using different chromatographic techniques, and each fraction was tested for its effect on OATP1B1- and OATP1B3-mediated transport of 1µM estrone-3-sulfate and 0.1µM estradiol-17||-glucuronide. Several inhibitors, including both substrate-specific and non-specific, were isolated and chemically identified. For instance, the compound Quercetin 3-O-||-L-arabinopyranosyl (1 ->2)||-L-rhamnopyranoside was shown to inhibit both OATP1B1- and OATP1B3-mediated transport of estradiol-17||-glucuronide by more than 90%, relative to control (DMSO). However, with respect to transport of 1µM estrone-3-sulfate it inhibits OATP1B1 by only 45% while, interestingly, stimulating transport mediated by OATP1B3 (2 fold over control). Thanks to our collaborative efforts, we were able to show that plants can be suitable source of small molecules that modulate OATPs using bioassay guided isolation approach

    The Spinal Transcriptome after Cortical Stroke: In Search of Molecular Factors Regulating Spontaneous Recovery in the Spinal Cord

    Full text link
    In response to cortical stroke and unilateral corticospinal tract degeneration, compensatory sprouting of spared corticospinal fibers is associated with recovery of skilled movement in rodents. To date, little is known about the molecular mechanisms orchestrating this spontaneous rewiring. In this study, we provide insights into the molecular changes in the spinal cord tissue after large ischemic cortical injury in adult female mice, with a focus on factors that might influence the reinnervation process by contralesional corticospinal neurons. We mapped the area of cervical gray matter reinnervation by sprouting contralesional corticospinal axons after unilateral photothrombotic stroke of the motor cortex in mice using anterograde tracing. The mRNA profile of this reinnervation area was analyzed using whole-genome sequencing to identify differentially expressed genes at selected time points during the recovery process. Bioinformatic analysis revealed two phases of processes: early after stroke (4-7 d post-injury), the spinal transcriptome is characterized by inflammatory processes, including phagocytic processes as well as complement cascade activation. Microglia are specifically activated in the denervated corticospinal projection fields in this early phase. In a later phase (28-42 d post-injury), biological processes include tissue repair pathways with upregulated genes related to neurite outgrowth. Thus, the stroke-denervated spinal gray matter, in particular its intermediate laminae, represents a growth-promoting environment for sprouting corticospinal fibers originating from the contralesional motor cortex. This dataset provides a solid starting point for future studies addressing key elements of the post-stroke recovery process, with the goal to improve neuroregenerative treatment options for stroke patients. SIGNIFICANCE STATEMENT We show that the molecular changes in the spinal cord target tissue of the stroke-affected corticospinal tract are mainly defined by two phases: an early inflammatory phase during which microglia are specifically activated in the target area of reinnervating corticospinal motor neurons; and a late phase during which growth-promoting factors are upregulated which can influence the sprouting response, arborization, and synapse formation. By defining for the first time the endogenous molecular machinery in the stroke-denervated cervical spinal gray matter with a focus on promotors of axon growth through the growth-inhibitory adult CNS, this study will serve as a basis to address novel neuroregenerative treatment options for chronic stroke patients

    Identification of Amino Acids Essential for Estrone-3-Sulfate Transport within Transmembrane Domain 2 of Organic Anion Transporting Polypeptide 1B1

    Get PDF
    As an important structure in membrane proteins, transmembrane domains have been found to be crucial for properly targeting the protein to cell membrane as well as carrying out transport functions in transporters. Computer analysis of OATP sequences revealed transmembrane domain 2 (TM2) is among those transmembrane domains that have high amino acid identities within different family members. In the present study, we identify four amino acids (Asp70, Phe73, Glu74, and Gly76) that are essential for the transport function of OATP1B1, an OATP member that is specifically expressed in the human liver. A substitution of these four amino acids with alanine resulted in significantly reduced transport activity. Further mutagenesis showed the charged property of Asp70 and Glu74 is critical for proper function of the transporter protein. Comparison of the kinetic parameters indicated that Asp70 is likely to interact with the substrate while Glu74 may be involved in stabilizing the binding site through formation of a salt-bridge. The aromatic ring structure of Phe73 seems to play an important role because substitution of Phe73 with tyrosine, another amino acid with a similar structure, led to partially restored transport function. On the other hand, replacement of Gly76 with either alanine or valine could not recover the function of the transporter. Considering the nature of a transmembrane helix, we proposed that Gly76 may be important for maintaining the proper structure of the protein. Interestingly, when subjected to transport function analysis of higher concentration of esteone-3-sulfate (50 µM) that corresponds to the low affinity binding site of OATP1B1, mutants of Phe73, Glu74, and Gly76 all showed a transport function that is comparable to that of the wild-type, suggesting these amino acids may have less impact on the low affinity component of esteone-3-sulfate within OATP1B1, while Asp 70 seems to be involved in the interaction of both sites

    Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse

    Get PDF
    A free electron can temporarily gain a very significant amount of energy if it is overrun by an intense electromagnetic wave. In principle, this process would permit large enhancements in the center-of-mass energy of electron-electron, electron-positron and electron-photon interactions if these take place in the presence of an intense laser beam. Practical considerations severely limit the utility of this concept for contemporary lasers incident on relativistic electrons. A more accessible laboratory phenomenon is electron-positron production via an intense laser beam incident on a gas. Intense electromagnetic pulses of astrophysical origin can lead to very energetic photons via bremsstrahlung of temporarily accelerated electrons

    Teaching for Higher Levels of Thinking: Developing Quantitative and Analytical Skills in Environmental Science Courses

    Get PDF
    Professionals with strong quantitative and analytical skills are essential to understanding and responding to current environmental challenges. The goal of this study was to promote and evaluate the development of data analysis (DA) skills in undergraduate students through targeted interventions in environmental science courses. We developed materials to promote practice, instruction, and assessment of four core DA dimensions: the ability to make appropriate calculations, convert data to graphical representations, interpret graphical or mathematical information, and draw conclusions based on the analysis of data. We integrated two conservation exercises as pre/post assessment tools, flanking differentiated teaching interventions, into selected science courses and used a standardized rubric to measure students\u27 performance level. We found that students improved their DA skills in a single semester, but the level of improvement varied across skill dimensions. Students struggled with dimensions that require higher levels of thinking such as data interpretation and drawing conclusions. The use of additional exercises targeting these dimensions and alternative practices might enhance gains. Importantly, students also gained content knowledge in ecological principles while developing skills, and demonstrated an increase in self‐confidence with their DA skills. Our approach and open‐access materials can be integrated into existing courses to develop and assess data skills in undergraduate learners

    Expression of OATP Family Members in Hormone-Related Cancers: Potential Markers of Progression

    Get PDF
    The organic anion transporting polypeptide (OATP) family of transporters has been implicated in prostate cancer disease progression probably by transporting hormones or drugs. In this study, we aimed to elucidate the expression, frequency, and relevance of OATPs as a biomarker in hormone-dependent cancers. We completed a study examining SLCO1B3, SLCO1B1 and SLCO2B1 mRNA expression in 381 primary, independent patient samples representing 21 cancers and normal tissues. From a separate cohort, protein expression of OATP1B3 was examined in prostate, colon, and bladder tissue. Based on expression frequency, SLCO2B1 was lower in liver cancer (P = 0.04) which also trended lower with decreasing differentiation (P = 0.004) and lower magnitude in pancreatic cancer (P = 0.05). SLCO2B1 also had a higher frequency in thyroid cancer (67%) than normal (0%) and expression increased with stage (P = 0.04). SLCO1B3 was expressed in 52% of cancerous prostate samples and increased SLCO1B3 expression trended with higher Gleason score (P = 0.03). SLCO1B3 expression was also higher in testicular cancer (P = 0.02). SLCO1B1 expression was lower in liver cancer (P = 0.04) which trended lower with liver cancer grade (P = 0.0004) and higher with colon cancer grade (P = 0.05). Protein expression of OATP1B3 was examined in normal and cancerous prostate, colon, and bladder tissue samples from an independent cohort. The results were similar to the transcription data, but showed distinct localization. OATPs correlate to differentiation in certain hormone-dependent cancers, thus may be useful as biomarkers for assessing clinical treatment and stage of disease

    Differential Effects of Pravastatin and Simvastatin on the Growth of Tumor Cells from Different Organ Sites

    Get PDF
    3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, commonly known as statins, may possess cancer preventive and therapeutic properties. Statins are effective suppressors of cholesterol synthesis with a well-established risk-benefit ratio in cardiovascular disease prevention. Mechanistically, targeting HMGCR activity primarily influences cholesterol biosynthesis and prenylation of signaling proteins. Pravastatin is a hydrophilic statin that is selectively taken up by a sodium-independent organic anion transporter protein-1B1 (OATP1B1) exclusively expressed in liver. Simvastatin is a hydrophobic statin that enters cells by other mechanisms. Poorly-differentiated and well-differentiated cancer cell lines were selected from various tissues and examined for their response to these two statins. Simvastatin inhibited the growth of most tumor cell lines more effectively than pravastatin in a dose dependent manner. Poorly-differentiated cancer cells were generally more responsive to simvastatin than well-differentiated cancer cells, and the levels of HMGCR expression did not consistently correlate with response to statin treatment. Pravastatin had a significant effect on normal hepatocytes due to facilitated uptake and a lesser effect on prostate PC3 and colon Caco-2 cancer cells since the OATP1B1 mRNA and protein were only found in the normal liver and hepatocytes. The inhibition of cell growth was accompanied by distinct alterations in mitochondrial networks and dramatic changes in cellular morphology related to cofilin regulation and loss of p-caveolin. Both statins, hydrophilic pravastatin and hypdrophobic simvastatin caused redistribution of OATP1B1 and HMGCR to perinuclear sites. In conclusion, the specific chemical properties of different classes of statins dictate mechanistic properties which may be relevant when evaluating biological responses to statins

    The Concise Guide to PHARMACOLOGY 2023/24: Transporters

    Get PDF
    \ua9 2023 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
    corecore