89 research outputs found

    Effect of eplerenone on extracellular cardiac matrix biomarkers in patients with acute ST-elevation myocardial infarction without heart failure: insights from the randomized double-blind REMINDER Study

    Get PDF
    Objective: Aldosterone stimulates cardiac collagen synthesis. Circulating biomarkers of collagen turnover provide a useful tool for the assessment of cardiac remodeling in patients with an acute myocardial infarction (MI).  Methods: The REMINDER trial assessed the effect of eplerenone in patients with an acute ST-elevation Myocardial Infarction (STEMI) without known heart failure (HF), when initiated within 24 h of symptom onset. The primary outcome was almost totally (>90%) driven by natriuretic peptide (NP) thresholds after 1-month post-MI (it also included a composite of cardiovascular death or re-hospitalization or new onset HF or sustained ventricular tachycardia or fibrillation or LVEF ≤40% after 1-month post-MI). This secondary analysis aims to assess the extracellular matrix marker (ECMM) levels with regards to: (1) patients` characteristics; (2) determinants; (3) and eplerenone effect.  Results: Serum levels of ECMM were measured in 526 (52%) of the 1012 patients enrolled in the REMINDER trial. Patients with procollagen type III N-terminal propeptide (PIIINP) above the median were older and had worse renal function (p < 0.05). Worse renal function was associated with increased levels of PIIINP (standardized β ≈ 0.20, p < 0.05). Eplerenone reduced PIIINP when the levels of this biomarker were above the median of 3.9 ng/mL (0.13 ± 1.48 vs. -0.37 ± 1.56 ng/mL, p = 0.008). Higher levels of PIIINP were independently associated with higher proportion of NP above the prespecified thresholds (HR = 1.95, 95% CI 1.16-3.29, p = 0.012).  Conclusions: Eplerenone effectively reduces PIIINP levels when baseline values were above the median. Eplerenone may limit ECMM formation in post-MI without HF

    Gene expression analysis indicates CB1 receptor upregulation in the hippocampus and neurotoxic effects in the frontal cortex 3 weeks after single-dose MDMA administration in Dark Agouti rats.

    Get PDF
    BACKGROUND: 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is a widely used recreational drug known to impair cognitive functions on the long-run. Both hippocampal and frontal cortical regions have well established roles in behavior, memory formation and other cognitive tasks and damage of these regions is associated with altered behavior and cognitive functions, impairments frequently described in heavy MDMA users. The aim of this study was to examine the hippocampus, frontal cortex and dorsal raphe of Dark Agouti rats with gene expression arrays (Illumina RatRef bead arrays) looking for possible mechanisms and new candidates contributing to the effects of a single dose of MDMA (15 mg/kg) 3 weeks earlier. RESULTS: The number of differentially expressed genes in the hippocampus, frontal cortex and the dorsal raphe were 481, 155, and 15, respectively. Gene set enrichment analysis of the microarray data revealed reduced expression of 'memory' and 'cognition', 'dendrite development' and 'regulation of synaptic plasticity' gene sets in the hippocampus, parallel to the upregulation of the CB1 cannabinoid- and Epha4, Epha5, Epha6 ephrin receptors. Downregulated gene sets in the frontal cortex were related to protein synthesis, chromatin organization, transmembrane transport processes, while 'dendrite development', 'regulation of synaptic plasticity' and 'positive regulation of synapse assembly' gene sets were upregulated. Changes in the dorsal raphe region were mild and in most cases not significant. CONCLUSION: The present data raise the possibility of new synapse formation/synaptic reorganization in the frontal cortex three weeks after a single neurotoxic dose of MDMA. In contrast, a prolonged depression of new neurite formation in the hippocampus is suggested by the data, which underlines the particular vulnerability of this brain region after the drug treatment. Finally, our results also suggest the substantial contribution of CB1 receptor and endocannabinoid mediated pathways in the hippocampal impairments. Taken together the present study provides evidence for the participation of new molecular candidates in the long-term effects of MDMA

    Carboxypeptidase-M is regulated by lipids and CSFs in macrophages and dendritic cells and expressed selectively in tissue granulomas and foam cells

    Get PDF
    Granulomatous inflammations, characterized by the presence of activated macrophages (MAs) forming epithelioid cell (EPC) clusters, are usually easy to recognize. However, in ambiguous cases the use of a MA marker that expresses selectively in EPCs may be needed. Here, we report that carboxypeptidase-M (CPM), a MA-differentiation marker, is preferentially induced in EPCs of all granuloma types studied, but not in resting MAs. As CPM is not expressed constitutively in MAs, this allows utilization of CPM-immunohistochemistry in diagnostics of minute granuloma detection when dense non-granulomatous MAs are also present. Despite this rule, hardly any detectable CPM was found in advanced/active tubercle caseous disease, albeit in early tuberculosis granuloma, MAs still expressed CPM. Indeed, in vitro both the CPM-protein and -mRNA became downregulated when MAs were infected with live mycobacteria. In vitro, MA-CPM transcript is neither induced remarkably by interferon-γ, known to cause classical MA activation, nor by IL-4, an alternative MA activator. Instead, CPM is selectively expressed in lipid-laden MAs, including the foam cells of atherosclerotic plaques, xanthomatous lesions and lipid pneumonias. By using serum, rich in lipids, and low-density lipoprotein (LDL) or VLDL, CPM upregulation could be reproduced in vitro in monocyte-derived MAs both at transcriptional and protein levels, and the increase is repressed under lipid-depleted conditions. The microarray analyses support the notion that CPM induction correlates with a robust progressive increase in CPM gene expression during monocyte to MA maturation and dendritic cell (DC) differentiation mediated by granulocyte–MA-colony-stimulating factor+IL-4. M-CSF alone also induced CPM. These results collectively indicate that CPM upregulation in MAs is preferentially associated with increased lipid uptake, and exposure to CSF, features of EPCs, also. Therefore, CPM-immunohistochemistry is useful for granuloma and foam MA detections in tissue sections. Furthermore, the present data offer CPM for the first time to be a novel marker and cellular player in lipid uptake and/or metabolism of MAs by promoting foam cell formation

    Stem Cell Therapy: Pieces of the Puzzle

    Get PDF
    Acute ischemic injury and chronic cardiomyopathies can cause irreversible loss of cardiac tissue leading to heart failure. Cellular therapy offers a new paradigm for treatment of heart disease. Stem cell therapies in animal models show that transplantation of various cell preparations improves ventricular function after injury. The first clinical trials in patients produced some encouraging results, despite limited evidence for the long-term survival of transplanted cells. Ongoing research at the bench and the bedside aims to compare sources of donor cells, test methods of cell delivery, improve myocardial homing, bolster cell survival, and promote cardiomyocyte differentiation. This article reviews progress toward these goals

    Posters display III clinical outcome and PET

    Get PDF

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)

    Full text link

    Discrepancy between short-term and long-term effects of bone marrow-derived cell therapy in acute myocardial infarction: a systematic review and meta-analysis

    Get PDF
    Abstract Background Bone marrow-derived cell therapy has been used to treat acute myocardial infarction. However, the therapeutic efficacy of this approach remains controversial. Here, we performed a systematic review and meta-analysis to evaluate short-term and long-term effectiveness of bone marrow-derived therapy. Methods We searched eight databases (Ovid-Medline, Ovid-EMBASE, Cochrane Library, KoreaMed, KMBASE, KISS, RISS, and KisTi) up to December 2014. Demographic characteristics, clinical outcomes, and adverse events were analyzed. We identified 5534 potentially relevant studies; 405 were subjected to a full-text review. Forty-three studies with 2635 patients were included in this review. Results No safety issues related to cell injection were reported during follow-up. At 6 months, cell-injected patients showed modest improvements in left ventricular ejection fraction (LVEF) compared with the control group. However, there were no differences between groups at other time points. In the cardiac MRI analysis, there were no significant differences in infarct size reduction between groups. Interestingly, mortality tended to be reduced at the 3-year follow-up, and at the 5-year follow-up, cell injection significantly decreased all-cause mortality. Conclusions This meta-analysis demonstrated discrepancies between short-term LV functional improvement and long-term all-cause mortality. Future clinical trials should include long-term follow-up outcomes to validate the therapeutic efficacy of cell therapy
    corecore