2,259 research outputs found

    Scaling and localization lengths of a topologically disordered system

    Get PDF
    We consider a noninteracting disordered system designed to model particle diffusion, relaxation in glasses, and impurity bands of semiconductors. Disorder originates in the random spatial distribution of sites. We find strong numerical evidence that this model displays the same universal behavior as the standard Anderson model. We use finite-size-scaling to find the localization length as a function of energy and density, including localized states away from the delocalization transition. Results at many energies all fit onto the same universal scaling curve.Comment: 5+ page

    The Connection Between Pulsation, Mass Loss and Circumstellar Shells in Classical Cepheids

    Full text link
    Recent observations of Cepheids using infrared interferometry and Spitzer photometry have detected the presence of circumstellar envelopes (CSE) of dust and it has been hypothesized that the CSE's are due to dust forming in a Cepheid wind. Here we use a modified Castor, Abbott & Klein formalism to produce a Cepheid wind, and this is used to estimate the contribution of mass loss to the Cepheid mass discrepancy Furthermore, we test the OGLE-III Classical Cepheids using the IR fluxes from the SAGE survey to determine if Large Magellanic Cloud Cepheids have CSE's. It is found that IR excess is a common phenomenon for LMC Cepheids and that the resulting mass-loss rates can explain at least a fraction of the Cepheid mass discrepancy, depending on the assumed dust-to-gas ratio in the wind.Comment: 5 pages, 3 figures, proceeding for "Stellar Pulsation: Challenges for Theory and Observation", Santa Fe 200

    The LHCb Timing and Fast Control system

    Get PDF
    In this paper we describe the LHCb Timing and Fast Control (TFC) system. It is different from that of the other LHC experiments in that it has to support two levels of high-rate triggers. Furthermore, emphasis has been put on partitioning and on locating the TFC mastership in one type of module: the Readout Supervisor. The Readout Supervisor handles all timing, trigger, and control command distribution. It generates auto-triggers as well as controls the trigger rates. Partitioning is handled by a programmable patch panel/switch introduced in the TTC distribution network between a pool of Readout Supervisors and the Front-End electronics. I

    Discrete single-photon quantum walks with tunable decoherence

    Get PDF
    Quantum walks have a host of applications, ranging from quantum computing to the simulation of biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum walks with single photons in space. The number of optical elements required scales linearly with the number of steps. We measure walks with up to 6 steps and explore the quantum-to-classical transition by introducing tunable decoherence. Finally, we also investigate the effect of absorbing boundaries and show that decoherence significantly affects the probability of absorption.Comment: Published version, 5 pages, 4 figure

    Charge-coupled devices with fast timing for astrophysics and space physics research

    Get PDF
    A charge coupled device is under development with fast timing capability (15 millisecond full frame readout, 30 microsecond resolution for measuring the time of individual pixel hits). The fast timing CCD will be used in conjunction with a CsI microfiber array or segmented scintillator matrix detector to detect x rays and gamma rays with submillimeter position resolution. The initial application will be in conjunction with a coded aperture hard x ray/gamma ray astronomy instrument. We describe the concept and the readout architecture of the device

    Toward a New Kind of Asteroseismic Grid Fitting

    Get PDF
    Recent developments in instrumentation (e.g., in particular the Kepler and CoRoT satellites) provide a new opportunity to improve the models of stellar pulsations. Surface layers, rotation, and magnetic fields imprint erratic frequency shifts, trends, and other non-random behavior in the frequency spectra. As our observational uncertainties become smaller, these are increasingly important and difficult to deal with using standard fitting techniques. To improve the models, new ways to compare their predictions with observations need to be conceived. In this paper we present a completely probabilistic (Bayesian) approach to asteroseismic model fitting. It allows for varying degrees of prior mode identification, corrections for the discrete nature of the grid, and most importantly implements a treatment of systematic errors, such as the "surface effects." It removes the need to apply semi- empirical corrections to the observations prior to fitting them to the models and results in a consistent set of probabilities with which the model physics can be probed and compared. As an example, we show a detailed asteroseismic analysis of the Sun. We find a most probable solar age, including a 35 +- 5 million year pre-main sequence phase, of 4.591 billion years, and initial element mass fractions of X_0 = 0.72, Y_0 = 0.264, Z_0 = 0.016, consistent with recent asteroseismic and non-asteroseismic studies.Comment: 15 pages, 5 figures, accepted for publication in The Astrophysical Journal; v2 contains minor changes made in the proofs (updated references & corrected typos

    High fat diet attenuates the anticontractile activity of aortic PVAT via a mechanism involving AMPK and reduced adiponectin secretion

    Get PDF
    Background and aim: Perivascular adipose tissue (PVAT) positively regulates vascular function through production of factors such as adiponectin but this effect is attenuated in obesity. The enzyme AMP-activated protein kinase (AMPK) is present in PVAT and is implicated in mediating the vascular effects of adiponectin. In this study, we investigated the effect of an obesogenic high fat diet (HFD) on aortic PVAT and whether any changes involved AMPK. Methods: Wild type Sv129 (WT) and AMPKα1 knockout (KO) mice aged 8 weeks were fed normal diet (ND) or HFD (42% kcal fat) for 12 weeks. Adiponectin production by PVAT was assessed by ELISA and AMPK expression studied using immunoblotting. Macrophages in PVAT were identified using immunohistochemistry and markers of M1 and M2 macrophage subtypes evaluated using real time-qPCR. Vascular responses were measured in endothelium-denuded aortic rings with or without attached PVAT. Carotid wire injury was performed and PVAT inflammation studied 7 days later. Key results: Aortic PVAT from KO and WT mice was morphologically indistinct but KO PVAT had more infiltrating macrophages. HFD caused an increased infiltration of macrophages in WT mice with increased expression of the M1 macrophage markers Nos2 and Il1b and the M2 marker Chil3. In WT mice, HFD reduced the anticontractile effect of PVAT as well as reducing adiponectin secretion and AMPK phosphorylation. PVAT from KO mice on ND had significantly reduced adiponectin secretion and no anticontractile effect and feeding HFD did not alter this. Wire injury induced macrophage infiltration of PVAT but did not cause further infiltration in KO mice. Conclusions: High-fat diet causes an inflammatory infiltrate, reduced AMPK phosphorylation and attenuates the anticontractile effect of murine aortic PVAT. Mice lacking AMPKα1 phenocopy many of the changes in wild-type aortic PVAT after HFD, suggesting that AMPK may protect the vessel against deleterious changes in response to HFD

    Nitric oxide modulates expression of extracellular matrix genes linked to fibrosis in kidney mesangial cells

    Get PDF
    Mesangial cells are thought to be important mediators of glomerular inflammation and fibrosis. Studies have established a direct role for nitric oxide (NO) in the regulation of gene expression in mesangial cells. Representational difference analysis was used to investigate changes in gene expression elicited by the treatment of S-nitroso-L-glutathione in rat mesangial cells. Seven upregulated and 11 downregulated genes were identified. Four out of 11 downregulated genes (connective tissue growth factor, thrombospondin-1, collagen type I all and collagen type I alpha 2) are known to be linked to inflammation and fibrosis. Results were verified across species in mesangial cells treated with a series of NO donors using Northern blot analysis, quantitative real-time PCR and protein analysis methods. Induction of endogenous NO production by cytokine stimulation also triggered regulation of the genes. One example gene, connective tissue growth factor, was studied at the promoter level. Promoter-reporter gene studies in mesangial cells demonstrated that NO acts at the transcriptional level to suppress gene expression. Our results reveal a complex role of NO in regulating gene expression in mesangial cells and suggest an antifibrotic potential for NO

    Balloon-borne coded aperture telescope for arc-minute angular resolution at hard x-ray energies

    Get PDF
    We are working on the development of a new balloon-borne telescope, MARGIE (minute-of-arc resolution gamma ray imaging experiment). It will be a coded aperture telescope designed to image hard x-rays (in various configurations) over the 20 - 600 keV range with an angular resolution approaching one arc minute. MARGIE will use one (or both) of two different detection plane technologies, each of which is capable of providing event locations with sub-mm accuracies. One such technology involves the use of cadmium zinc telluride (CZT) strip detectors. We have successfully completed a series of laboratory measurements using a prototype CZT detector with 375 micron pitch. Spatial location accuracies of better than 375 microns have been demonstrated. A second type of detection plane would be based on CsI microfiber arrays coupled to a large area silicon CCD readout array. This approach would provide spatial resolutions comparable to that of the CZT prototype. In one possible configuration, the coded mask would be 0.5 mm thick tungsten, with 0.5 mm pixels at a distance of 1.5 m from the central detector giving an angular resolution of 1 arc-minute and a fully coded field of view of 12 degrees. We review the capabilities of the MARGIE telescope and report on the status of our development efforts and our plans for a first balloon flight
    corecore