634 research outputs found

    Catalog of selected heavy duty transport energy management models

    Get PDF
    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle

    Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome

    Get PDF
    Arterial tortuosity syndrome (ATS) is an autosomal recessive disorder characterized by tortuosity, elongation, stenosis and aneurysm formation in the major arteries owing to disruption of elastic fibers in the medial layer of the arterial wall1. Previously, we used homozygosity mapping to map a candidate locus in a 4.1-Mb region on chromosome 20q13.1 (ref. 2). Here, we narrowed the candidate region to 1.2 Mb containing seven genes. Mutations in one of these genes, SLC2A10, encoding the facilitative glucose transporter GLUT10, were identified in six ATS families. GLUT10 deficiency is associated with upregulation of the TGFb pathway in the arterial wall, a finding also observed in Loeys-Dietz syndrome, in which aortic aneurysms associate with arterial tortuosity3. The identification of a glucose transporter gene responsible for altered arterial morphogenesis is notable in light of the previously suggested link between GLUT10 and type 2 diabetes4,5. Our data could provide new insight on the mechanisms causing microangiopathic changes associated with diabetes and suggest that therapeutic compounds intervening with TGFb signaling represent a new treatment strategy

    Mesenchymal-epithelial signalling in tumour microenvironment: role of high-mobility group Box 1.

    Get PDF
    Glucose deprivation, hypoxia and acidosis are characteristic features of the central core of most solid tumours. Myofibroblasts are stromal cells present in many such solid tumours, including those of the colon, and are known to be involved in all stages of tumour progression. HMGB1 is a nuclear protein with an important role in nucleosome stabilisation and gene transcription; it is also released from immune cells and is involved in the inflammatory process. We report that the microenvironmental condition of glucose deprivation is responsible for the active release of HMGB1 from various types of cancer cell lines (HT-29, MCF-7 and A549) under normoxic conditions. Recombinant HMGB1 (10 ng/ml) triggered proliferation in myofibroblast cells via activation of PI3K and MEK1/2. Conditioned medium collected from glucose-deprived HT-29 colon cancer cells stimulated the migration and invasion of colonic myofibroblasts, and these processes were significantly inhibited by immunoneutralising antibodies to HMGB1, RAGE and TLR4, together with specific inhibitors of PI3K and MEK1/2. Our data suggest that HMGB1 released from cancer cells under glucose deprivation is involved in stimulating colonic myofibroblast migration and invasion and that this occurs through the activation of RAGE and TLR4, resulting in the activation of the MAPK and PI3K signalling pathways. Thus, HMGB1 might be released by cancer cells in areas of low glucose in solid tumours with the resulting activation of myofibroblasts and is a potential therapeutic target to inhibit solid tumour growth

    Sexual Health Dysfunction After Radiotherapy for Gynecological Cancer: Role of Physical Rehabilitation Including Pelvic Floor Muscle Training

    Get PDF
    Introduction: The present study aims to describe: 1. How the side effects of radiotherapy (RT) could impact sexual health in women; 2. The effectiveness of physical rehabilitation including pelvic floor muscle training (PFMT) in the management of sexual dysfunction after RT. Materials and Methods: Search keys on PubMed, Web of Science, Scopus, PEDro, and Cochrane were used to identify studies on women treated with radical or adjuvant RT and/or brachytherapy for gynecological cancers with an emphasis on vulvo-vaginal toxicities and PFMT studies on sexual dysfunction for this group of women. Results: Regarding the first key question, we analyzed 19 studies including a total of 2,739 women who reported vaginal dryness, stenosis, and pain as the most common side effects. Reports of dosimetric risk factors and dose-effect data for vaginal and vulvar post-RT toxicities are scant. Only five studies, including three randomized controlled trials (RCTs), were found to report the effect of PFMT alone or in combination with other treatments. The results showed some evidence for the effect of training modalities including PFMT, but to date, there is insufficient evidence from high-quality studies to draw any conclusion of a possible effect. Conclusions: Gynecological toxicities after RT are common, and their management is challenging. The few data available for a rehabilitative approach on post-actinic vulvo-vaginal side effects are encouraging. Large and well-designed RCTs with the long-term follow-up that investigate the effect of PFMT on vulvo-vaginal tissues and pelvic floor muscle function are needed to provide further guidance for clinical management

    Quantitative EEG biomarkers for STXBP1-related disorders

    Get PDF
    Objective: EEG patterns and quantitative EEG (qEEG) features have been poorly explored in monogenic epilepsies. Herein, we investigate regional differences in EEG frequency composition in patients with STXBP1 developmental and epileptic encephalopathy (STXBP1-DEE). Methods: We conducted a retrospective study collecting electroclinical data of patients with STXBP1-DEE and two control groups of patients with DEEs of different etiologies and typically developing individuals matched for age and sex. We performed a (1) visual EEG assessment, (b) qEEG analysis, and (c) electrical source imaging (ESI). We quantified the relative power (RP) of four frequency bands (α β, θ, δ), in two electrode groups (anterior/posterior), and compared their averages and dynamics (standard deviation [SD] over time). The ESI was performed by applying the standard Distributed Source Modeling algorithm. Results: We analyzed 42 EEG studies in 19 patients with STXBP1-DEE (10 female), with a median age at recordings of 9.6 years (range 9 months to 29 years). The δRP was higher in recordings of STXBP1-DEE (p <.001) compared to both control groups, suggesting the pathogenicity and STXBP1-specificity of these findings. In STXBP1-DEE, the δRP was significantly higher in the anterior electrode group compared to the posterior one (p =.003). There was no correlation between the anterior δRP and the epilepsy focus, age at recordings, and concomitant medications The ESI modeling of this activity showed a widespread involvement of the dorsomesial frontal cortex, suggesting a large corticosubcortical pathologic network. Finally, we identified two groups of recordings: cluster.1 with higher anterior δRP and low dynamics and cluster.2 with lower δRP and higher dynamics. Patients in cluster.1 had a more severe epilepsy and neurological phenotype compared to patients in cluster 2. Significance: The qEEG analysis showed a predominant frontal slow activity as a specific STXBP1 feature that correlates with the severity of the phenotype and may represent a biomarker for prospective longitudinal studies of STXBP1-DEE

    Parathyroid hormone receptors in GtoPdb v.2023.1

    Get PDF
    The parathyroid hormone receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Parathyroid Hormone Receptors [50]) are class B G protein-coupled receptors. The parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor (PTH1 receptor) is activated by precursor-derived peptides: PTH (84 amino acids), and PTHrP (141 amino-acids) and related peptides (PTH-(1-34), PTHrP-(1-36)). The parathyroid hormone 2 receptor (PTH2 receptor) is activated by the precursor-derived peptide TIP39 (39 amino acids). [125I]PTH may be used to label both PTH1 and PTH2 receptors. The structure of a long-active PTH analogue (LA-PTH, an hybrid of PTH-(1-13) and PTHrP-(14-36)) bound to the PTH1 receptor-Gs complex has been resolved by cryo-electron microscopy [148]. Another structure of a PTH-(1-34) analog bound to a thermostabilized inactive PTH1 receptor has been obtained with X-ray crytallography [35]

    Parathyroid hormone receptors in GtoPdb v.2025.3

    Get PDF
    The parathyroid hormone receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Parathyroid Hormone Receptors [50]) are class B G protein-coupled receptors. The parathyroid hormone (PTH)/parathyroid hormone-related protein (PTHrP) receptor (PTH1 receptor) is activated by : PTH (84 amino acids), and PTHrP (141 amino-acids) and related N-terminal peptides (PTH-(1-34), PTHrP-(1-36)). The parathyroid hormone 2 receptor (PTH2 receptor) is activated by the precursor-derived peptide TIP39 (39 amino acids) and PTH. [125I]PTH may be used to label both PTH1 and PTH2 receptors. The structure of a long-active PTH analogue (LA-PTH, an hybrid of PTH-(1-13) and PTHrP-(14-36)) bound to the PTH1 receptor-Gs complex has been resolved by cryo-electron microscopy [150]. Another structure of a PTH-(1-34) analog bound to a thermostabilized inactive PTH1 receptor has been obtained with X-ray crytallography [35]

    Parathyroid hormone receptors in GtoPdb v.2021.3

    Get PDF
    The parathyroid hormone receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Parathyroid Hormone Receptors [49]) are class B G protein-coupled receptors. The parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor (PTH1 receptor) is activated by precursor-derived peptides: PTH (84 amino acids), and PTHrP (141 amino-acids) and related peptides (PTH-(1-34), PTHrP-(1-36)). The parathyroid hormone 2 receptor (PTH2 receptor) is activated by the precursor-derived peptide TIP39 (39 amino acids). [125I]PTH may be used to label both PTH1 and PTH2 receptors. The structure of a long-active PTH analogue (LA-PTH, an hybrid of PTH-(1-13) and PTHrP-(14-36)) bound to the PTH1 receptor-Gs complex has been resolved by cryo-electron microscopy [147]. Another structure of a PTH-(1-34) analog bound to a thermostabilized inactive PTH1 receptor has been obtained with X-ray crytallography [34]

    Is Brain-Derived Neurotropic Factor Methylation Involved in the Association Between Prenatal Stress and Maternal Postnatal Anxiety During the COVID-19 Pandemic?

    Get PDF
    BackgroundThe COVID-19 pandemic is a collective trauma that may expose susceptible individuals to high levels of stress. Pregnant women represent a high-risk population, considering that pregnancy is a period of heightened neuroplasticity and susceptibility to stress through epigenetic mechanisms. Previous studies showed that the methylation status of the BDNF gene is linked with prenatal stress exposure. The goals of this study were (a) to assess the association between pandemic-related stress and postnatal anxiety and (b) to investigate the potential role of maternal BDNF methylation as a significant mediator of this association. MethodsIn the present study, we report data on the association among pandemic-related stress during pregnancy, maternal BDNF methylation, and postnatal anxiety symptoms. Pandemic-related stress and postnatal anxiety were assessed through self-report instruments. BDNF methylation was estimated in 11 CpG sites in DNA from mothers' buccal cells. Complete data were available from 108 mothers. ResultsResults showed that pandemic-related stress was associated with an increased risk of postnatal anxiety, r = 0.20, p < 0.05. CpG-specific BDNF methylation was significantly associated with both prenatal pandemic-related stress, r = 0.21, p < 0.05, and postnatal maternal anxious symptoms, r = 0.25, p = 0.01. Moreover, a complete mediation by the BDNF CpG6 methylation emerged between pandemic-related stress during pregnancy and postnatal maternal anxiety, ACME = 0.66, p < 0.05. ConclusionThese findings suggest that BDNF epigenetic regulation by pandemic-related stress might contribute to increase the risk of anxiety in mothers. Policymakers should prioritize the promotion of health and wellbeing in pregnant women and mothers during the present healthcare emergency

    Parathyroid hormone receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The parathyroid hormone receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Parathyroid Hormone Receptors [47]) are family B G protein-coupled receptors. The parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor (PTH1 receptor) is activated by precursor-derived peptides: PTH (84 amino acids), and PTHrP (141 amino-acids) and related peptides (PTH-(1-34), PTHrP-(1-36)). The parathyroid hormone 2 receptor (PTH2 receptor) is activated by the precursor-derived peptide TIP39 (39 amino acids). [125I]PTH may be used to label both PTH1 and PTH2 receptors
    corecore