668 research outputs found
Osteoprotegerin regulates cancer cell migration through SDF-1/CXCR4 axis and promotes tumour development by increasing neovascularization
We previously reported that OPG is involved in ischemic tissue neovascularization through the secretion of SDF-1 by pretreated-OPG endothelial colony-forming cells (ECFCs). As the vascularization is one of the key factor influencing the tumour growth and cancer cell dissemination, we investigated whether OPG was able to modulate the invasion of human MNNG-HOS osteosarcoma and DU145 prostate cancer cell lines in vitro and in vivo. Cell motility was analysed in vitro by using Boyden chambers. Human GFP-labelled MMNG-HOS cells were inoculated in immunodeficient mice and the tumour nodules formed were then injected with OPG and/or FGF-2, AMD3100 or 0.9% NaCl (control group). Tumour growth was manually followed and angiogenesis was assessed by immunohistochemistry. In vitro, SDF-1 released by OPG-pretreated ECFCs markedly attracted both MNNG-HOS and DU145 cells and induced spontaneous migration of cancer cells. In vivo, tumour volumes were significantly increased in OPG-treated group compared to the control group and OPG potentiated the effect of FGF-2. Concomitantly, OPG alone or combined with FGF-2 increased the number of new vasculature compared to the control group. Interestingly AMD3100, an inhibitor of SDF-1, prevented the in vivo effects of OPG induced by SDF-1 This study provides experimental evidence that OPG promotes tumour development trough SDF-1/CXCR4 axis
Magneto-Dielectric Effect in the S = 1/2 Quasi-Two Dimensional Antiferromagnet K2V3O8
We report the optical and magneto-optical properties of K2V3O8, an S=1/2
quasi-two-dimensional Heisenberg antiferromagnet. Local spin density
approximation electronic structure calculations are used to assign the observed
excitations and analyze the field dependent features. Two large magneto-optical
effects, centered at ~1.19 and 2.5 eV, are attributed to field-induced changes
in the V 4+ d to d on-site excitations due to modification of the local crystal
field environment of the VO5 square pyramids with applied magnetic field. Taken
together, the evidence for a soft lattice, the presence of vibrational fine
structure on the sharp 1.19 eV magneto-optical feature,and the fact that these
optical excitations are due to transitions from a nearly pure spin polarized V
d state to hybridized states involving both V and O, suggest that the
magneto-dielectric effect in K2V3O8 is driven by strong lattice coupling.Comment: Zipped file containing 8 pages, 12 figures, in press PR
Weak ferromagnetism and field-induced spin reorientation in K2V3O8
Magnetization and neutron diffraction measurements indicate long-range
antiferromagnetic ordering below TN=4 K in the 2D, S=1/2 Heisenberg
antiferromagnet K2V3O8. The ordered state exhibits ``weak ferromagnetism'' and
novel, field-induced spin reorientations. These experimental observations are
well described by a classical, two-spin Heisenberg model incorporating
Dzyaloshinskii-Moriya interactions and an additional c-axis anisotropy. This
additional anisotropy can be accounted for by inclusion of the symmetric
anisotropy term recently described by Kaplan, Shekhtman, Entin-Wohlman, and
Aharony. This suggests that K2V3O8 may be a very unique system where the
qualitative behavior relies on the presence of this symmetric anisotropy.Comment: 5 pages, 4 ps figures, REVTEX, submitted to PR
Survival of graphitized petrogenic organic carbon through multiple erosional cycles
Graphite forms the endpoint for organic carbon metamorphism; it is extremely resilient to physical, biological and chemical degradation. Carbonaceous materials (CM) contained within sediments, collected across Taiwan and from the Gaoping submarine canyon, were analyzed using Raman spectroscopy to determine the crystallinity. This allowed the erosional and orogenic movements of petrogenic organic carbon (OCpetro) during the Taiwanese orogeny to be deduced. After automatically fitting and classifying spectra, the distribution of four groups of CM within the sediments provides evidence that many forms of OCpetro have survived at least one previous cycle of erosion, transport and burial before forming rocks in the Western Foothills of the island. There is extensive detrital graphite present in rocks that have not experienced high-grade metamorphism, and graphite flakes are also found in recently deposited marine sediments off Taiwan. The tectonic and geological history of the island shows that these graphite flakes must have survived at least three episodes of recycling. Therefore, transformation to graphite during burial and orogeny is a mechanism for stabilizing organic carbon over geological time, removing biospheric carbon from the active carbon cycle and protecting it from oxidation during future erosion events
The actin-binding protein profilin 2 is a novel regulator of iron homeostasis
Cellular iron homeostasis is controlled by the iron regulatory proteins (IRPs) 1 and 2 that bind cis-regulatory iron-responsive elements (IRE) on target messenger RNAs (mRNA). We identified profilin 2 (Pfn2) mRNA, which encodes an actin-binding protein involved in endocytosis and neurotransmitter release, as a novel IRP-interacting transcript, and studied its role in iron metabolism. A combination of electrophoretic mobility shift assay experiments and bioinformatic analyses led to the identification of an atypical and conserved IRE in the 39 untranslated region of Pfn2 mRNA. Pfn2 mRNA levels were significantly reduced in duodenal samples from mice with intestinal IRP ablation, suggesting that IRPs exert a positive effect on Pfn2 mRNA expression in vivo. Overexpression of Pfn2 in HeLa and Hepa1-6 cells reduced their metabolically active iron pool. Importantly, Pfn2-deficient mice showed iron accumulation in discrete areas of the brain (olfactory bulb, hippocampus, and midbrain) and reduction of the hepatic iron store without anemia. Despite low liver iron levels, hepatic hepcidin expression remained high, likely because of compensatory activation of hepcidin by mild inflammation. Splenic ferroportin was increased probably to sustain hematopoiesis. Overall, our results indicate that Pfn2 expression is controlled by the IRPs in vivo and that Pfn2 contributes to maintaining iron homeostasis in cell lines and mice
28nm Fully-Depleted SOI Technology: Cryogenic Control Electronics for Quantum Computing
This paper reports the first cryogenic characterization of 28nm
Fully-Depleted-SOI CMOS technology. A comprehensive study of digital/analog
performances and body-biasing from room to the liquid helium temperature is
presented. Despite a cryogenic operation, effectiveness of body-biasing remains
unchanged and provides an excellent controllability. Low-temperature
operation enables higher drive current and a largely reduced subthreshold swing
(down to 7mV/dec). FDSOI can provide a valuable approach to cryogenic low-power
electronics. Applications such as classical control hardware for quantum
processors are envisioned
Magnetic bound states in the quarter-filled ladder system }
Raman scattering in the quarter-filled spin ladder system alpha'-NaV_2O_5
shows in the dimerized singlet ground state () an unexpected
sequence of three magnetic bound states. Our results suggest that the recently
proposed mapping onto an effective spin chain for has to be given
up in favor of the full topology and exchange paths of a ladder in the
dimerized phase for . As the new ground state we propose a dynamic
superposition of energetically nearly degenerate dimer configurations on the
ladder.Comment: 5 pages, 4 figures, to be published in PRB, brief reports, Dec. 199
Arctic deltaic lake sediments as recorders of fluvial organic matter deposition
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Earth Science 4 (2016): 77, doi:10.3389/feart.2016.00077.Arctic deltas are dynamic and vulnerable regions that play a key role in land-ocean interactions and the global carbon cycle. Delta lakes may provide valuable historical records of the quality and quantity of fluvial fluxes, parameters that are challenging to investigate in these remote regions. Here we study lakes from across the Mackenzie Delta, Arctic Canada, that receive fluvial sediments from the Mackenzie River when spring flood water levels rise above natural levees. We compare downcore lake sediments with suspended sediments collected during the spring flood, using bulk (% organic carbon, % total nitrogen, δ13C, Δ14C) and molecular organic geochemistry (lignin, leaf waxes). High-resolution age models (137Cs, 210Pb) of downcore lake sediment records (n = 11) along with lamina counting on high-resolution radiographs show sediment deposition frequencies ranging between annually to every 15 years. Down-core geochemical variability in a representative delta lake sediment core is consistent with historical variability in spring flood hydrology (variability in peak discharge, ice jamming, peak water levels). Comparison with earlier published Mackenzie River depth profiles shows that (i) lake sediments reflect the riverine surface suspended load, and (ii) hydrodynamic sorting patterns related to spring flood characteristics are reflected in the lake sediments. Bulk and molecular geochemistry of suspended particulate matter from the spring flood peak and lake sediments are relatively similar showing a mixture of modern higher-plant derived material, older terrestrial permafrost material, and old rock-derived material. This suggests that deltaic lake sedimentary records hold great promise as recorders of past (century-scale) riverine fluxes and may prove instrumental in shedding light on past behavior of arctic rivers, as well as how they respond to a changing climate.Funding was provided by the US National Science Foundation as part of the Arctic Great Rivers Observatory (NSF-0732522 and NSF-1107774), as well as the Netherlands Organization for Scientific Research (Rubicon #825.10.022, and Veni #863.12.004). Additional funding for the lake coring was provided from WHOI through its Ocean and Climate Change Institute
Low temperature ellipsometry of NaV2O5
The dielectric function of alpha'NaV2O5 was measured with electric field
along the a and b axes in the photon energy range 0.8-4.5 eV for temperatures
down to 4K. We observe a pronounced decrease of the intensity of the 1 eV peak
upon increasing temperature with an activation energy of about 25meV,
indicating that a finite fraction of the rungs becomes occupied with two
electrons while others are emptied as temperature increases. No appreciable
shifts of peaks were found s in the valence state of individual V atoms at the
phase transition is very small. A remarkable inflection of this temperature
dependence at the phase transition at 34 K indicates that charge ordering is
associated with the low temperature phase.Comment: Revisions in style and order of presentation. One new figure. In
press in Physical Review B. REVTeX, 4 pages with 4 postscript figure
Ab initio evaluation of the charge-ordering in
We report {\it ab initio} calculations of the charge ordering in
using large configurations interaction methods on
embedded fragments. Our major result is that the electrons of the
bridging oxygen of the rungs present a very strong magnetic character and
should thus be explicitly considered in any relevant effective model. The most
striking consequence of this result is that the spin and charge ordering differ
substantially, as differ the experimental results depending on whether they are
sensitive to the spin or charge density.Comment: 4 page
- …