5,382 research outputs found
Discrete Logarithms in Generalized Jacobians
D\'ech\`ene has proposed generalized Jacobians as a source of groups for
public-key cryptosystems based on the hardness of the Discrete Logarithm
Problem (DLP). Her specific proposal gives rise to a group isomorphic to the
semidirect product of an elliptic curve and a multiplicative group of a finite
field. We explain why her proposal has no advantages over simply taking the
direct product of groups. We then argue that generalized Jacobians offer poorer
security and efficiency than standard Jacobians
Vertical Distribution of Deep-Pelagic (0-3000 M) Fishes Over the Charlie-Gibbs Fracture Zone Region of the Northern Mid-Atlantic Ridge
Only a tiny fraction of the world’s largest volume of living space, the ocean’s midwater biome, has ever been sampled. As part of the International Census of Marine Life field project, MAR-ECO, a discrete-depth trawling survey was conducted in 2009 aboard the NOAA ship Henry B. Bigelow to examine pelagic assemblage structure and distribution over the Charlie-Gibbs Fracture Zone of the northern Mid-Atlantic Ridge. The bottom topography in this region ranges from 4500 m in the channel to 700-800 m on top of adjacent seamounts. Sampling was conducted at 11 stations from 0-3000 m using a Norwegian “Krill” trawl with five codends that opened and closed by a pre-programmed timer. Seventy-five species of fishes were collected, with a maximum species diversity and biomass being observed between 700-1900 m. Other key features observed were a strong diel migrating component and frequent captures of putative bathypelagic fishes, shrimps, and cephalopods in the epipelagic zone (0-200 m). The results of MAR-ECO sampling show patterns unlike those previously reported for open ocean ecosystems
Deep-Sea Fishes of the Mid-Atlantic Ridge: Results of the 2009 Henry Bigelow Expedition
As part of an ongoing study of the northern Mid-Atlantic Ridge biodiversity and ecology (CoML field project MAR-ECO), a detailed survey of the pelagic and demersal fishes in the region of the Charlie-Gibbs Fracture Zone (~ 600 n.m. south of Greenland) was conducted. A total of 17181 pelagic fishes (92 spp., 35 families) were sampled from 0-3000+ m, with the Myctophidae the most species-rich. The bristlemouth Cyclothone microdon was by far the dominant species in numbers (82% of total), while the sawtooth eel Serrivomer beani dominated biomass (27%). A total of 441 deep-demersal fishes (28 spp., 13 families) were sampled from 1872-3527 m, with the Macrouridae and Alepocephalidae comprising half of species numbers. The abyssal halosaur Halosauropsis macrochir was most abundant, while the abyssal grenadier Coryphaenoides armatus contributed the most biomass. Remarkable among the pelagic fish data were routine shallow catches of bathypelagic fishes (see A.B. Cook et al., this volume), and among the demersal fishes were the large size of the individuals, above or near the maximum known for many species. The high species number relative to sample number portends the enhanced deep-sea biodiversity about abrupt topographic features, while the lack of asymptote of species number versus sampling effort underscores our incomplete inventory of this biodiversity
Recommended from our members
Rapid coastal deoxygenation due to ocean circulation shift in the NW Atlantic.
Global observations show that the ocean lost approximately 2% of its oxygen inventory over the last five decades 1-3, with important implications for marine ecosystems 4, 5. The rate of change varies with northwest Atlantic coastal waters showing a long-term drop 6, 7 that vastly outpaces the global and North Atlantic basin mean deoxygenation rates 5, 8. However, past work has been unable to resolve mechanisms of large-scale climate forcing from local processes. Here, we use hydrographic evidence to show a Labrador Current retreat is playing a key role in the deoxygenation on the northwest Atlantic shelf. A high-resolution global coupled climate-biogeochemistry model 9 reproduces the observed decline of saturation oxygen concentrations in the region, driven by a retreat of the equatorward-flowing Labrador Current and an associated shift toward more oxygen-poor subtropical waters on the shelf. The dynamical changes underlying the shift in shelf water properties are correlated with a slowdown in the simulated Atlantic Meridional Overturning Circulation 10. Our results provide strong evidence that a major, centennial-scale change of the Labrador Current is underway, and highlight the potential for ocean dynamics to impact coastal deoxygenation over the coming century
Ultrafast pump-probe dynamics in ZnSe-based semiconductor quantum-wells
Pump-probe experiments are used as a controllable way to investigate the
properties of photoexcited semiconductors, in particular, the absorption
saturation. We present an experiment-theory comparison for ZnSe quantum wells,
investigating the energy renormalization and bleaching of the excitonic
resonances. Experiments were performed with spin-selective excitation and
above-bandgap pumping. The model, based on the semiconductor Bloch equations in
the screened Hartree-Fock approximation, takes various scattering processes
into account phenomenologically. Comparing numerical results with available
experimental data, we explain the experimental results and find that the
electron spin-flip occurs on a time scale of 30 ps.Comment: 10 pages, 9 figures. Key words: nonlinear and ultrafast optics,
modeling of femtosecond pump-probe experiments, electron spin-flip tim
An americium‐fueled gas core nuclear rocket
A gas core fission reactor that utilizes americium in place of uranium is examined for potential utilization as a nuclear rocket for space propulsion. The isomer 242mAm with a half life of 141 years is obtained from an (n, γ) capture reaction with 241Am, and has the highest known thermal fission cross section. We consider a 7500 MW reactor, whose propulsion characteristics with 235U have already been established, and re‐examine it using americium. We find that the same performance can be achieved at a comparable fuel density, and a radial size reduction (of both core and moderator/reflector) of about 70%.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87734/2/585_1.pd
More Discriminants with the Brezing-Weng Method
The Brezing-Weng method is a general framework to generate families of
pairing-friendly elliptic curves. Here, we introduce an improvement which can
be used to generate more curves with larger discriminants. Apart from the
number of curves this yields, it provides an easy way to avoid endomorphism
rings with small class number
Cell organization in soft media due to active mechanosensing
Adhering cells actively probe the mechanical properties of their environment
and use the resulting information to position and orient themselves. We show
that a large body of experimental observations can be consistently explained
from one unifying principle, namely that cells strengthen contacts and
cytoskeleton in the direction of large effective stiffness. Using linear
elasticity theory to model the extracellular environment, we calculate optimal
cell organization for several situations of interest and find excellent
agreement with experiments for fibroblasts, both on elastic substrates and in
collagen gels: cells orient in the direction of external tensile strain, they
orient parallel and normal to free and clamped surfaces, respectively, and they
interact elastically to form strings. Our method can be applied for rational
design of tissue equivalents. Moreover our results indicate that the concept of
contact guidance has to be reevaluated. We also suggest that cell-matrix
contacts are upregulated by large effective stiffness in the environment
because in this way, build-up of force is more efficient.Comment: Revtex, 7 pages, 4 Postscript files include
Regularity properties of optimal controls for problems with time-varying state and control constraints
Accepted versio
- …
