93 research outputs found

    Attenuation of Toll-Like Receptor Expression and Function in Latent Tuberculosis by Coexistent Filarial Infection with Restoration Following Antifilarial Chemotherapy

    Get PDF
    Mycobacterium tuberculosis (Mtb) and filarial coinfection is highly prevalent, and the presence of filarial infections may regulate the Toll-like receptor (TLR)-dependent immune response needed to control Mtb infection. By analyzing the baseline and mycobacterial antigen–stimulated expression of TLR1, 2, 4, and 9 (in individuals with latent tuberculosis [TB] with or without filarial infection), we were able to demonstrate that filarial infection, coincident with Mtb, significantly diminishes both baseline and Mtb antigen-specific TLR2 and TLR9 expression. In addition, pro-inflammatory cytokine responses to TLR2 and 9 ligands are significantly diminished in filaria/TB-coinfected individuals. Definitive treatment of lymphatic filariasis significantly restores the pro-inflammatory cytokine responses in individuals with latent TB. Coincident filarial infection exerted a profound inhibitory effect on protective mycobacteria-specific TLR-mediated immune responses in latent tuberculosis and suggests a novel mechanism by which concomitant filarial infections predispose to the development of active tuberculosis in humans

    The pathogen recognition sensor, NOD2, is variably expressed in patients with pulmonary tuberculosis

    Get PDF
    Background: NOD2, an intracellular pathogen recognition sensor, modulates innate defences to muropeptides derived from various bacterial species, including Mycobacterium tuberculosis (MTB). Experimentally, NOD2 attenuates two key putative mycobactericidal mechanisms. TNF-alpha synthesis is markedly reduced in MTB-antigen stimulated-mononuclear cells expressing mutant NOD2 proteins. NOD2 agonists also induce resistance to apoptosis, and may thus facilitate the survival of MTB in infected macrophages. To further define a role for NOD2 in disease pathogenesis, we analysed NOD2 transcriptional responses in pulmonary leucocytes and mononuclear cells harvested from patients with pulmonary tuberculosis (PTB).Methods: We analysed NOD2 mRNA expression by real-time polymerase chain-reaction in alveolar lavage cells obtained from 15 patients with pulmonary tuberculosis and their matched controls. We compared NOD2 transcriptional responses, in peripheral leucocytes, before and after anti-tuberculous treatment in 10 patients. In vitro, we measured NOD2 mRNA levels in MTB-antigen stimulated-mononuclear cells.Results: No significant differences in NOD2 transcriptional responses were detected in patients and controls. In some patients, however, NOD2 expression was markedly increased and correlated with toll-like-receptor 2 and 4 expression. In whole blood, NOD2 mRNA levels increased significantly after completion of anti-tuberculosis treatment. NOD2 expression levels did not change significantly in mononuclear cells stimulated with mycobacterial antigens in vitro.Conclusion: There are no characteristic NOD2 transcriptional responses in PTB. Nonetheless, the increased levels of NOD2 expression in some patients with severe tuberculosis, and the increases in expression levels within peripheral leucocytes following treatment merit further studies in selected patient and control populations

    Membrane TNF confers protection to acute mycobacterial infection

    Get PDF
    BACKGROUND: Tumour necrosis factor (TNF) is crucial for the control of mycobacterial infection as TNF deficient (KO) die rapidly of uncontrolled infection with necrotic pneumonia. Here we investigated the role of membrane TNF for host resistance in knock-in mice with a non-cleavable and regulated allele (mem-TNF). METHODS: C57BL/6, TNF KO and mem-TNF mice were infected with M. tuberculosis H37Rv (Mtb at 100 CFU by intranasal administration) and the survival, bacterial load, lung pathology and immunological parameters were investigated. Bone marrow and lymphocytes transfers were used to test the role of membrane TNF to confer resistance to TNF KO mice. RESULTS: While TNF-KO mice succumbed to infection within 4–5 weeks, mem-TNF mice recruited normally T cells and macrophages, developed mature granuloma in the lung and controlled acute Mtb infection. However, during the chronic phase of infection mem-TNF mice succumbed to disseminated infection with necrotic pneumonia at about 150 days. Reconstitution of irradiated TNF-KO mice with mem-TNF derived bone marrow cells, but not with lymphocytes, conferred host resistance to Mtb infection in TNF-KO mice. CONCLUSION: Membrane expressed TNF is sufficient to allow cell-cell signalling and control of acute Mtb infection. Bone marrow cells, but not lymphocytes from mem-TNF mice confer resistance to infection in TNF-KO mice. Long-term infection control with chronic inflammation likely disrupting TNF mediated cell-cell signalling, additionally requires soluble TNF

    Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis.

    Get PDF
    Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1β and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities

    Reactivation of M. tuberculosis Infection in Trans-Membrane Tumour Necrosis Factor Mice

    Get PDF
    Of those individuals who are infected with M. tuberculosis, 90% do not develop active disease and represents a large reservoir of M. tuberculosis with the potential for reactivation of infection. Sustained TNF expression is required for containment of persistent infection and TNF neutralization leads to tuberculosis reactivation. In this study, we investigated the contribution of soluble TNF (solTNF) and transmembrane TNF (Tm-TNF) in immune responses generated against reactivating tuberculosis. In a chemotherapy induced tuberculosis reactivation model, mice were challenged by aerosol inhalation infection with low dose M. tuberculosis for three weeks to establish infection followed chemotherapeutic treatment for six weeks, after which therapy was terminated and tuberculosis reactivation investigated. We demonstrate that complete absence of TNF results in host susceptibility to M. tuberculosis reactivation in the presence of established mycobacteria-specific adaptive immunity with mice displaying unrestricted bacilli growth and diffused granuloma structures compared to WT control mice. Interestingly, bacterial re-emergence is contained in Tm-TNF mice during the initial phases of tuberculosis reactivation, indicating that Tm-TNF sustains immune pressure as in WT mice. However, Tm-TNF mice show susceptibility to long term M. tuberculosis reactivation associated with uncontrolled influx of leukocytes in the lungs and reduced IL-12p70, IFNγ and IL-10, enlarged granuloma structures, and failure to contain mycobacterial replication relative to WT mice. In conclusion, we demonstrate that both solTNF and Tm-TNF are required for maintaining immune pressure to contain reactivating M. tuberculosis bacilli even after mycobacteria-specific immunity has been established

    Transmembrane TNF-α: structure, function and interaction with anti-TNF agents

    Get PDF
    Transmembrane TNF-α, a precursor of the soluble form of TNF-α, is expressed on activated macrophages and lymphocytes as well as other cell types. After processing by TNF-α-converting enzyme (TACE), the soluble form of TNF-α is cleaved from transmembrane TNF-α and mediates its biological activities through binding to Types 1 and 2 TNF receptors (TNF-R1 and -R2) of remote tissues. Accumulating evidence suggests that not only soluble TNF-α, but also transmembrane TNF-α is involved in the inflammatory response. Transmembrane TNF-α acts as a bipolar molecule that transmits signals both as a ligand and as a receptor in a cell-to-cell contact fashion. Transmembrane TNF-α on TNF-α-producing cells binds to TNF-R1 and -R2, and transmits signals to the target cells as a ligand, whereas transmembrane TNF-α also acts as a receptor that transmits outside-to-inside (reverse) signals back to the cells after binding to its native receptors. Anti-TNF agents infliximab, adalimumab and etanercept bind to and neutralize soluble TNF-α, but exert different effects on transmembrane TNF-α-expressing cells (TNF-α-producing cells). In the clinical settings, these three anti-TNF agents are equally effective for RA, but etanercept is not effective for granulomatous diseases. Moreover, infliximab induces granulomatous infections more frequently than etanercept. Considering the important role of transmembrane TNF-α in granulomatous inflammation, reviewing the biology of transmembrane TNF-α and its interaction with anti-TNF agents will contribute to understanding the bases of differential clinical efficacy of these promising treatment modalities

    Activation of an NLRP3 Inflammasome Restricts Mycobacterium kansasii Infection

    Get PDF
    Mycobacterium kansasii has emerged as an important nontuberculous mycobacterium pathogen, whose incidence and prevalence have been increasing in the last decade. M. kansasii can cause pulmonary tuberculosis clinically and radiographically indistinguishable from that caused by Mycobacterium tuberculosis infection. Unlike the widely-studied M. tuberculosis, little is known about the innate immune response against M. kansasii infection. Although inflammasome activation plays an important role in host defense against bacterial infection, its role against atypical mycobacteria remains poorly understood. In this report, the role of inflammasome activity in THP-1 macrophages against M. kansasii infection was studied. Results indicated that viable, but not heat-killed, M. kansasii induced caspase-1-dependent IL-1β secretion in macrophages. The underlying mechanism was found to be through activation of an inflammasome containing the NLR (Nod-like receptor) family member NLRP3 and the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). Further, potassium efflux, lysosomal acidification, ROS production and cathepsin B release played a role in M. kansasii-induced inflammasome activation. Finally, the secreted IL-1β derived from caspase-1 activation was shown to restrict intracellular M. kansasii. These findings demonstrate a biological role for the NLRP3 inflammasome in host defense against M. kansasii
    • …
    corecore