2,674 research outputs found
Harnack inequality for fractional sub-Laplacians in Carnot groups
In this paper we prove an invariant Harnack inequality on
Carnot-Carath\'eodory balls for fractional powers of sub-Laplacians in Carnot
groups. The proof relies on an "abstract" formulation of a technique recently
introduced by Caffarelli and Silvestre. In addition, we write explicitly the
Poisson kernel for a class of degenerate subelliptic equations in product-type
Carnot groups
Approximations of Sobolev norms in Carnot groups
This paper deals with a notion of Sobolev space introduced by
J.Bourgain, H.Brezis and P.Mironescu by means of a seminorm involving local
averages of finite differences. This seminorm was subsequently used by A.Ponce
to obtain a Poincar\'e-type inequality. The main results that we present are a
generalization of these two works to a non-Euclidean setting, namely that of
Carnot groups. We show that the seminorm expressd in terms of the intrinsic
distance is equivalent to the norm of the intrinsic gradient, and provide
a Poincar\'e-type inequality on Carnot groups by means of a constructive
approach which relies on one-dimensional estimates. Self-improving properties
are also studied for some cases of interest
Harnack inequality and regularity for degenerate quasilinear elliptic equations
We prove Harnack inequality and local regularity results for weak solutions
of a quasilinear degenerate equation in divergence form under natural growth
conditions. The degeneracy is given by a suitable power of a strong
weight. Regularity results are achieved under minimal assumptions on the
coefficients and, as an application, we prove local estimates
for solutions of a degenerate equation in non divergence form
Basic properties of nonsmooth Hormander's vector fields and Poincare's inequality
We consider a family of vector fields defined in some bounded domain of R^p,
and we assume that they satisfy Hormander's rank condition of some step r, and
that their coefficients have r-1 continuous derivatives. We extend to this
nonsmooth context some results which are well-known for smooth Hormander's
vector fields, namely: some basic properties of the distance induced by the
vector fields, the doubling condition, Chow's connectivity theorem, and, under
the stronger assumption that the coefficients belong to C^{r-1,1}, Poincare's
inequality. By known results, these facts also imply a Sobolev embedding. All
these tools allow to draw some consequences about second order differential
operators modeled on these nonsmooth Hormander's vector fields.Comment: 60 pages, LaTeX; Section 6 added and Section 7 (6 in the previous
version) changed. Some references adde
Recommended from our members
A Raman spectroscopic study of carbon phases in impact melt rocks and breccias from the Gardnos impact structure, Norway
Raman spectroscopy suggests that the C was emplaced in at least two separate episodes into the impactites of the Gardnos impact structure
Recommended from our members
Search for Q: single grains Xe isotope analysis of carbonaceous residue from Yilmia
We analyse Xe in single grains in HF-HCl residue from Yilmia using RELAX mass spectrometer
First and second variation formulae for the sub-Riemannian area in three-dimensional pseudo-hermitian manifolds
We calculate the first and the second variation formula for the
sub-Riemannian area in three dimensional pseudo-hermitian manifolds. We
consider general variations that can move the singular set of a C^2 surface and
non-singular variation for C_H^2 surfaces. These formulas enable us to
construct a stability operator for non-singular C^2 surfaces and another one
for C2 (eventually singular) surfaces. Then we can obtain a necessary condition
for the stability of a non-singular surface in a pseudo-hermitian 3-manifold in
term of the pseudo-hermitian torsion and the Webster scalar curvature. Finally
we classify complete stable surfaces in the roto-traslation group RT .Comment: 36 pages. Misprints corrected. Statement of Proposition 9.8 slightly
changed and Remark 9.9 adde
Optical pumping of charged excitons in unintentionally doped InAs quantum dots
As an alternative to commonly used electrical methods, we have investigated
the optical pumping of charged exciton complexes addressing impurity related
transitions with photons of the appropriate energy. Under these conditions, we
demonstrate that the pumping fidelity can be very high while still maintaining
a switching behavior between the different excitonic species. This mechanism
has been investigated for single quantum dots of different size present in the
same sample and compared with the direct injection of spectator electrons from
nearby donors.Comment: 4 pages and 3 figures submitted to AP
Recommended from our members
The 2001 Omani-Swiss meteorite search campaign and recovery of Shergottite Sayh Al Uhaymir 094
- …
