This paper deals with a notion of Sobolev space W1,p introduced by
J.Bourgain, H.Brezis and P.Mironescu by means of a seminorm involving local
averages of finite differences. This seminorm was subsequently used by A.Ponce
to obtain a Poincar\'e-type inequality. The main results that we present are a
generalization of these two works to a non-Euclidean setting, namely that of
Carnot groups. We show that the seminorm expressd in terms of the intrinsic
distance is equivalent to the Lp norm of the intrinsic gradient, and provide
a Poincar\'e-type inequality on Carnot groups by means of a constructive
approach which relies on one-dimensional estimates. Self-improving properties
are also studied for some cases of interest