817 research outputs found

    Photoperiodically driven changes in Fos expression within the basal tuberal hypothalamus and median eminence of Japanese quail

    Get PDF
    The rapid photoperiodic response in Japanese quail is so precise that it allows neural analyses of how photoperiodic information is transduced into an endocrine response. After transfer from short [SD; 6L:18D (6:18 hr light/dark cycle)] to long (LD; 20L:4D) days, luteinizing hormone (LH) first rises 20 hr after dawn. Using Fos immunocytochemistry, we examined the basal tuberal hypothalamus (BtH) to determine the relationship between brain cell activation and the first endocrine changes. Two separate cell populations within the BtH expressed Fos-like immunoreactivity (FLI) by hour 18 of the first LD. Importantly, this activation occurred before the LH rise. Median eminence activation appeared within glial cells, whereas activated infundibular nucleus cells were neuronal, providing support to the view that gonadotropin-releasing hormone (GnRH) release can be controlled at the terminals by glia. The FLI induction parallels LH changes, suggesting that gene expression may be involved in events preceding photostimulation and is the earliest photoperiodically stimulated physiological change yet reported.Additional experiments provided further support for this hypothesis. First, photoperiodically induced activation is not a result peculiar to castrates because intact birds displayed similar results. Second, the critical length of 14 hr of light had to be exceeded to cause both BtH activation and a LH rise 30 hr from dawn. Finally, valuable evidence of the response specificity was provided by using a unique property of the quail photoperiodic clock in which exposure to 10L:26D, but not 10L:14D, causes photoinduction. The 36 hr paradigm increased both plasma LH and BtH activation.</jats:p

    A Digital Neuromorphic Architecture Efficiently Facilitating Complex Synaptic Response Functions Applied to Liquid State Machines

    Full text link
    Information in neural networks is represented as weighted connections, or synapses, between neurons. This poses a problem as the primary computational bottleneck for neural networks is the vector-matrix multiply when inputs are multiplied by the neural network weights. Conventional processing architectures are not well suited for simulating neural networks, often requiring large amounts of energy and time. Additionally, synapses in biological neural networks are not binary connections, but exhibit a nonlinear response function as neurotransmitters are emitted and diffuse between neurons. Inspired by neuroscience principles, we present a digital neuromorphic architecture, the Spiking Temporal Processing Unit (STPU), capable of modeling arbitrary complex synaptic response functions without requiring additional hardware components. We consider the paradigm of spiking neurons with temporally coded information as opposed to non-spiking rate coded neurons used in most neural networks. In this paradigm we examine liquid state machines applied to speech recognition and show how a liquid state machine with temporal dynamics maps onto the STPU-demonstrating the flexibility and efficiency of the STPU for instantiating neural algorithms.Comment: 8 pages, 4 Figures, Preprint of 2017 IJCN

    Tracking Cyber Adversaries with Adaptive Indicators of Compromise

    Full text link
    A forensics investigation after a breach often uncovers network and host indicators of compromise (IOCs) that can be deployed to sensors to allow early detection of the adversary in the future. Over time, the adversary will change tactics, techniques, and procedures (TTPs), which will also change the data generated. If the IOCs are not kept up-to-date with the adversary's new TTPs, the adversary will no longer be detected once all of the IOCs become invalid. Tracking the Known (TTK) is the problem of keeping IOCs, in this case regular expressions (regexes), up-to-date with a dynamic adversary. Our framework solves the TTK problem in an automated, cyclic fashion to bracket a previously discovered adversary. This tracking is accomplished through a data-driven approach of self-adapting a given model based on its own detection capabilities. In our initial experiments, we found that the true positive rate (TPR) of the adaptive solution degrades much less significantly over time than the naive solution, suggesting that self-updating the model allows the continued detection of positives (i.e., adversaries). The cost for this performance is in the false positive rate (FPR), which increases over time for the adaptive solution, but remains constant for the naive solution. However, the difference in overall detection performance, as measured by the area under the curve (AUC), between the two methods is negligible. This result suggests that self-updating the model over time should be done in practice to continue to detect known, evolving adversaries.Comment: This was presented at the 4th Annual Conf. on Computational Science & Computational Intelligence (CSCI'17) held Dec 14-16, 2017 in Las Vegas, Nevada, US

    Marine Virus-Like Particles and Microbes: A Linear Interpretation

    Get PDF
    Viruses are key players in ocean ecology and biogeochemistry, not only because of their functional roles but also partially due to their sheer abundance (Fuhrman, 1999; Wilhelm and Suttle, 1999). Because viruses cannot replicate without their hosts’ machinery, their abundance is inextricably related to that of their (mostly microbial) hosts. The relationship between viral and microbial abundances is thus of great interest

    Mapping of serotype-specific, immunodominant epitopes in the NS-4 region of hepatitis C virus (HCV):use of type-specific peptides to serologically differentiate infections with HCV types 1, 2, and 3

    Get PDF
    The effect of sequence variability between different types of hepatitis C virus (HCV) on the antigenicity of the NS-4 protein was investigated by epitope mapping and by enzyme-linked immunosorbent assay with branched oligopeptides. Epitope mapping of the region between amino acid residues 1679 and 1768 in the HCV polyprotein revealed two major antigenic regions (1961 to 1708 and 1710 to 1728) that were recognized by antibody elicited upon natural infection of HCV. The antigenic regions were highly variable between variants of HCV, with only 50 to 60% amino acid sequence similarity between types 1, 2, and 3. Although limited serological cross-reactivity between HCV types was detected between peptides, particularly in the first antigenic region of NS-4, type-specific reactivity formed the principal component of the natural humoral immune response to NS-4. Type-specific antibody to particular HCV types was detected in 89% of the samples from anti-HCV-positive blood donors and correlated almost exactly with genotypic analysis of HCV sequences amplified from the samples by polymerase chain reaction. Whereas almost all blood donors appeared to be infected with a single virus type (97%), a higher proportion of samples (40%) from hemophiliacs infected from transfusion of non-heat-inactivated clotting factor contained antibody to two or even all three HCV types, providing evidence that long-term exposure may lead to multiple infection with different variants of HCV

    The lavender plumage colour in Japanese quail is associated with a complex mutation in the region of MLPH that is related to differences in growth, feed consumption and body temperature

    Get PDF
    Background The lavender phenotype in quail is a dilution of both eumelanin and phaeomelanin in feathers that produces a blue-grey colour on a wild-type feather pattern background. It has been previously demonstrated by intergeneric hybridization that the lavender mutation in quail is homologous to the same phenotype in chicken, which is caused by a single base-pair change in exon 1 of MLPH. Results In this study, we have shown that a mutation of MLPH is also associated with feather colour dilution in quail, but that the mutational event is extremely different. In this species, the lavender phenotype is associated with a non-lethal complex mutation involving three consecutive overlapping chromosomal changes (two inversions and one deletion) that have consequences on the genomic organization of four genes (MLPH and the neighbouring PRLH, RAB17 and LRRFIP1). The deletion of PRLH has no effect on the level of circulating prolactin. Lavender birds have lighter body weight, lower body temperature and increased feed consumption and residual feed intake than wild-type plumage quail, indicating that this complex mutation is affecting the metabolism and the regulation of homeothermy. Conclusions An extensive overlapping chromosome rearrangement was associated with a non-pathological Mendelian trait and minor, non deleterious effects in the lavender Japanese quail which is a natural knockout for PRLH

    N fertilizer and harvest impacts on bioenergy crop contributions to SOC

    Get PDF
    Below ground root biomass is infrequently measured and simply represented in models that predict landscape level changes to soil carbon stocks and greenhouse gas balances. Yet, crop-specific responses to N fertilizer and harvest treatments are known to impact both plant allocation and tissue chemistry, potentially altering decomposition rates and the direction and magnitude of soil C stock changes and greenhouse gas fluxes. We examined switchgrass (Panicum virgatum L.) and corn (Zea mays L.,) yields, below ground root biomass, C, N and soil particulate organic matter-C (POM-C) in a 9-year rain fed study of N fertilizer rate (0, 60, 120 and 180 kg N ha-1) and harvest management near Mead, NE, USA. Switchgrass was harvested with one pass in either August or postfrost, and for no-till (NT) corn, either 50% or no stover was removed. Switchgrass had greater below ground root biomass C and N (6.39, 0.10 Mg ha-1) throughout the soil profile compared to NT-corn (1.30, 0.06 Mg ha-1) and a higher below ground root biomass C:N ratio, indicating greater recalcitrant below ground root biomass C input beneath switchgrass. There was little difference between the two crops in soil POM-C indicating substantially slower decomposition and incorporation into SOC under switchgrass, despite much greater root C. The highest N rate decreased POM-C under both NT-corn and switchgrass, indicating faster decomposition rates with added fertilizer. Residue removal reduced corn below ground root biomass C by 37% and N by 48% and subsequently reduced POM-C by 22% compared to no-residue removal. Developing productive bioenergy systems that also conserve the soil resource will require balancing fertilization that maximizes above ground productivity but potentially reduces SOC sequestration by reducing below ground root biomass and increasing root and soil C decomposition

    N fertilizer and harvest impacts on bioenergy crop contributions to SOC

    Get PDF
    Below ground root biomass is infrequently measured and simply represented in models that predict landscape level changes to soil carbon stocks and greenhouse gas balances. Yet, crop-specific responses to N fertilizer and harvest treatments are known to impact both plant allocation and tissue chemistry, potentially altering decomposition rates and the direction and magnitude of soil C stock changes and greenhouse gas fluxes. We examined switchgrass (Panicum virgatum L.) and corn (Zea mays L.,) yields, below ground root biomass, C, N and soil particulate organic matter-C (POM-C) in a 9-year rain fed study of N fertilizer rate (0, 60, 120 and 180 kg N ha-1) and harvest management near Mead, NE, USA. Switchgrass was harvested with one pass in either August or postfrost, and for no-till (NT) corn, either 50% or no stover was removed. Switchgrass had greater below ground root biomass C and N (6.39, 0.10 Mg ha-1) throughout the soil profile compared to NT-corn (1.30, 0.06 Mg ha-1) and a higher below ground root biomass C:N ratio, indicating greater recalcitrant below ground root biomass C input beneath switchgrass. There was little difference between the two crops in soil POM-C indicating substantially slower decomposition and incorporation into SOC under switchgrass, despite much greater root C. The highest N rate decreased POM-C under both NT-corn and switchgrass, indicating faster decomposition rates with added fertilizer. Residue removal reduced corn below ground root biomass C by 37% and N by 48% and subsequently reduced POM-C by 22% compared to no-residue removal. Developing productive bioenergy systems that also conserve the soil resource will require balancing fertilization that maximizes above ground productivity but potentially reduces SOC sequestration by reducing below ground root biomass and increasing root and soil C decomposition

    The effect of N-acetyl-aspartyl-glutamate and N-acetyl-aspartate on white matter oligodendrocytes

    Get PDF
    Elevations of the levels of N-acetyl-aspartyl-glutamate (NAAG) and N-acetyl-aspartate (NAA) are associated with myelin loss in the leucodystrophies Canavan's disease and Pelizaeus-Merzbacher-like disease. NAAG and NAA can activate and antagonize neuronal N-methyl-D-aspartate (NMDA) receptors, and also act on group II metabotropic glutamate receptors. Oligodendrocytes and their precursors have recently been shown to express NMDA receptors, and activation of these receptors in ischaemia leads to the death of oligodendrocyte precursors and the loss of myelin. This raises the possibility that the failure to develop myelin, or demyelination, occurring in the leucodystrophies could reflect an action of NAAG or NAA on oligodendrocyte NMDA receptors. However, since the putative subunit composition of NMDA receptors on oligodendrocytes differs from that of neuronal NMDA receptors, the effects of NAAG and NAA on them are unknown. We show that NAAG, but not NAA, evokes an inward membrane current in cerebellar white matter oligodendrocytes, which is reduced by NMDA receptor block (but not by block of metabotropic glutamate receptors). The size of the current evoked by NAAG, relative to that evoked by NMDA, was much smaller in oligodendrocytes than in neurons, and NAAG induced a rise in [Ca^{2+}]i in neurons but not in oligodendrocytes. These differences in the effect of NAAG on oligodendrocytes and neurons may reflect the aforementioned difference in receptor subunit composition. In addition, as a major part of the response in oligodendrocytes was blocked by tetrodotoxin (TTX), much of the NAAG-evoked current in oligodendrocytes is a secondary consequence of activating neuronal NMDA receptors. Six hours exposure to 1 mM NAAG did not lead to the death of cells in the white matter. We conclude that an action of NAAG on oligodendrocyte NMDA receptors is unlikely to be a major contributor to white matter damage in the leucodystrophies
    corecore