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N fertilizer and harvest impacts on bioenergy crop
contributions to SOC
CATHER INE E . STEWART 1 , RONALD F . FOLLETT 1 * , E L I ZABETH G . PRUES SNER 1 ,

GARY E . VARVEL 2 * , KENNETH P . VOGEL 3 * and ROBERT B. MITCHELL3

1Soil-Plant-Nutrient Research Unit, United States Department of Agriculture-Agricultural Research Service, Suite 100, 2150

Centre Avenue, Building D, Fort Collins, CO 80526-8119, USA, 2Agroecosystems Management Research Unit, USDA-ARS,

Univ. of Nebraska, 251 Filley Hall/Food Ind. Complex, Lincoln, NE 68583-0937, USA, 3Grain, Forage, and Bioenergy Research

Unit, USDA-ARS, Univ. of Nebraska, 251 Filley Hall/Food Ind. Complex, Lincoln, NE 68683-0937, USA

Abstract

Belowground root biomass is infrequently measured and simply represented in models that predict landscape-

level changes to soil carbon stocks and greenhouse gas balances. Yet, crop-specific responses to N fertilizer and
harvest treatments are known to impact both plant allocation and tissue chemistry, potentially altering decom-

position rates and the direction and magnitude of soil C stock changes and greenhouse gas fluxes. We examined

switchgrass (Panicum virgatum L.) and corn (Zea mays L.,) yields, belowground root biomass, C, N and soil par-

ticulate organic matter-C (POM-C) in a 9-year rainfed study of N fertilizer rate (0, 60, 120 and 180 kg N ha�1)

and harvest management near Mead, NE, USA. Switchgrass was harvested with one pass in either August or

postfrost, and for no-till (NT) corn, either 50% or no stover was removed. Switchgrass had greater belowground

root biomass C and N (6.39, 0.10 Mg ha�1) throughout the soil profile compared to NT-corn (1.30, 0.06 Mg ha�1)

and a higher belowground root biomass C:N ratio, indicating greater recalcitrant belowground root biomass C
input beneath switchgrass. There was little difference between the two crops in soil POM-C indicating substan-

tially slower decomposition and incorporation into SOC under switchgrass, despite much greater root C. The

highest N rate decreased POM-C under both NT-corn and switchgrass, indicating faster decomposition rates

with added fertilizer. Residue removal reduced corn belowground root biomass C by 37% and N by 48% and

subsequently reduced POM-C by 22% compared to no-residue removal. Developing productive bioenergy sys-

tems that also conserve the soil resource will require balancing fertilization that maximizes aboveground pro-

ductivity but potentially reduces SOC sequestration by reducing belowground root biomass and increasing root

and soil C decomposition.

Keywords: harvest timing, N fertilizer, residue removal, roots, soil C sequestration, soil fractions, soil organic C

Received 24 September 2015; accepted 5 November 2015

Introduction

Belowground plant biomass is the primary source of

soil organic C and yet is rarely quantified and not

dynamically represented in C cycle models. Roots can

contribute up to 50% of total plant biomass to below-

ground C in perennial systems that can extend up to

3 m (Ma et al., 2000; Garten et al., 2010, 2011). Corn (Zea

mays, L) can also have a deep root system that con-

tributes 22–50% or more of aboveground biomass to

belowground C as roots and root exudates (De Klein

et al., 2006; Johnson et al., 2006). Belowground contribu-

tions from NT-corn and switchgrass (Panicum virgatum

L.) help restore soil quality, reduce erosion potential

and increase soil C stocks to marginally productive land

(Jin et al., 2015; Stewart et al., 2015b). However, agricul-

tural management practices such as N fertilizer, harvest

timing and residue removal can subsequently alter

plant allocation and belowground contributions to SOC

(Garten et al., 2010).

Annual crops have larger external nutrient require-

ments compared to perennials, which can remobilize C

and N stored in rhizomes and roots (Wayman et al.,

2014). Agricultural management including N fertiliza-

tion and harvest practices can alter plant nutrient alloca-

tion between aboveground and belowground plant

organs and SOC stocks (Varvel et al., 2008; Heggen-

staller et al., 2009; Follett et al., 2012; Ontl et al., 2013).

Nitrogen fertilization increases aboveground plant

productivity, but many perennial species allocate addi-

tional N to aboveground, rather than belowground

growth, reducing belowground root production at high

*Retired.
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N fertilizer rates (Heggenstaller et al., 2009; Garten et al.,

2011). Switchgrass harvest removes most aboveground

biomass and the timing can significantly alter nutrient

translocation belowground (Vogel et al., 2002). Harvest-

ing switchgrass postfrost allows nutrient translocation

from the aboveground biomass belowground and

decreases N content of aboveground plant material,

potentially providing better feedstock quality, but at the

expense of the amount of harvested biomass (Vogel

et al., 2002; Wayman et al., 2014). N availability can also

change SOC stability through the decomposition or

priming of existing SOC depending on litter chemistry.

N fertilizer and residue quality are two primary con-

trols of litter decomposition. N fertilization increases

residue decomposition, but not in all cases (Craine et al.,

2007; Hobbie et al., 2012). Under scenarios of N fertiliza-

tion and higher soil N availability, residues with greater

lignin content may be more completely decomposed,

providing a lower overall contribution to soil C com-

pared to residues with a lower lignin content (Stewart

et al., 2015a). In nutrient-limited situations, plants can

increase root exudation, stimulating soil organic matter

decomposition (Personeni & Loiseau, 2004; Shahzad

et al., 2015) for nutrient acquisition (i.e., Craine et al.,

2007). Species with a greater root N content could be

expected to decompose and transition more quickly into

soil C pools, including the more labile particulate

organic matter (POM) fraction, which is comprised pri-

marily of partially decomposed plant material. Crop

species, N and residue management all influence the

amount and turnover of SOC within these C pools

(Camardella & Elliot, 1992).

In this study, we evaluate root-derived contributions

to belowground C stocks and decomposition into the

particulate organic matter soil C pool under potential

cellulosic bioenergy crops no-till (NT) corn and switch-

grass. Following conversion from conventionally tilled

corn production, the soil profile (0–150 cm) SOC stocks

increased under both crops after 9 years compared to

baseline (Follett et al., 2012). Here, we evaluate N fertil-

izer rate and harvest management treatment effects for

both crops after 9 years. We hypothesized overall con-

tributions to belowground C pools would be greater

under switchgrass, but due to greater N content of root

biomass, annual production and death of corn root bio-

mass would provide a greater contribution to particu-

late organic matter.

Material and methods

Site and experimental design

The long-term switchgrass and maize experiment began in

1998 at the University of Nebraska’s Agricultural Research and

Development Center (ARDC) (41.151W 96.40N) (details in

Varvel et al., 2008; Follett et al., 2012). The climate at the site is

mesic with a mean annual temperature of 10.5 °C and mean

annual precipitation of 765 mm. Field soils were Yutan silty

clay loam (fine-silty, mixed, superactive, mesic Mollic Haplu-

dalf) and Tomek silt loam (fine, smectitic, mesic Pachic Argiu-

doll).

The study was a randomized complete block split-split plot

experimental design with two cultivars of switchgrass (Trail-

blazer and Cave-in-Rock) and NT-corn with three replicates.

Due to stand deterioration in Trailblazer, we report data from

Cave-in-Rock only.

Three N fertility treatments were randomly assigned within

the main plots. Subplots were 30 m long 9 18 m wide and

are separated by 15 m wide alleys. From 2000 to 2007, N

fertilizer rates were N1 = 0, N2 = 60, N3 = 120 and

N4 = 180 kg N ha�1. Rates on the switchgrass were N1, N2

and N3 and on NT-corn were N2, N3 and N4. The 0N rate for

switchgrass was used as a low input treatment only for switch-

grass. In 2001, the switchgrass and corn subplots were split

lengthwise into 9 m wide sub-subplots for harvest treatments.

The two harvest treatments for switchgrass were August or

postfrost (PF) harvest date. The NT-corn stover was either

removed at 50% (residue removed, or RR) or no residue was

removed (NRR).

Aboveground biomass

Aboveground biomass harvesting methods for switchgrass and

corn are described in detail in Varvel et al. (2008) and Follett

et al. (2012). Briefly, for NT-corn, total aboveground dry matter

production (stover + grain) was measured annually by hand-

harvesting a 4.4 m long section of a nonborder, row from each

plot after physiological maturity (September or early October).

Ears were removed, dried and weighed. Stalks were cut at

ground level, chopped, weighed, and a subsample was dried at

60 °C until constant mass. After dried ears were shelled, cob

mass was added to dried stalk mass to obtain total stover pro-

duction. Corn grain yields were determined with a plot com-

bine equipped with a weighing unit that harvested the center

three rows of each plot. In plots with no stover removal, all

stover was left intact following grain harvest. In stover

removed plots, stover was removed using a field flail harvester.

We report only the 2006 aboveground C yields (grain + stover)

to approximate a full accounting with belowground C stocks

taken in the spring of 2007.

For switchgrass, the plots were harvested only once a year

from a 0.9 to 1.8 m wide swath (varied with harvester used)

the full 30 m length of the plots using flail harvesters and asso-

ciated weighing equipment. At time of harvest, subsamples

were collected from each subplot, weighed for moisture con-

tent, dried at 50 °C for 48 h and reweighed to determine dry

matter content. Yields were adjusted to a dry weight basis. The

C concentration of the switchgrass samples was determined

using near-infrared spectrometer (NIRS) procedures and cali-

brations (Vogel et al., 2011). Calibration data included samples

from 2000 to 2004 from this study reported in Varvel et al.

(2008) with a standard error of prediction for C of 4.49 (Vogel
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et al., 2011). A field flail harvester was used to remove all

remaining biomass from the plots immediately following the

yield harvest using the same harvest height of 10 cm. We

report averaged switchgrass yields from 1998 to 2007 here to

integrate lower yields during crop establishment and to inte-

grate extremely low aboveground biomass yields in some plots

for 2006 due to drought conditions (Follett et al., 2012). Precipi-

tation was lower than average from 1998 to 2007 (Jin et al.,

2015), resulting in low biomass production particularly in 2006

(Follett et al., 2012). Averages include planting year (1998)

which reduced average yield.

Soil Sampling

Soils and belowground root biomass were sampled between

April and May 2007 before corn planting. Plant material was

removed from the soil surface and then, using a flat-bladed

shovel, soils were undercut and removed from the 0–5, 5–10

and 10–30 cm depths to preserve soil structure for bulk density

analyses. Samples were also collected from the 30–60, 60–90,

90–120 and 120–150 cm depths in May 2007 using a 5.08 cm

hydraulic probe (Follett et al., 2012). To minimize plot distur-

bance, one core was collected for each of the three field repli-

cates between corn rows and switchgrass crowns. Soil bulk

densities on all depths were determined using the clod method

of the USDA-NRCS National Soils Laboratory methods (USDA-

NRCS, 2004).

Soils were 2 mm sieved and all >2 mm plant material hand-

picked from the soil, oven-dried (55 °C), subsampled, mechani-

cally ground to pass through a 0.2 mm sieve and stored in

glass containers until further analysis. All soils were checked

for carbonates and in the very few cases where carbonates

existed they were removed with a gentle wash in phosphoric

acid prior to analyses for organic C using accepted procedures

(Follett et al., 1997). All analyses were on an oven dry weight.

The methodology is such that both the isotopic C analyses and

the analyses for the total SOC are done at the same time for the

same sample.

Root separations, soil fractionation and C analyses

Roots were washed from the bulk soil samples from each

depth increment (1 core per field replicate) using a hydrop-

neumatic root elutriator (Smucker et al., 1982). Between two

and four replicate subsamples, 50 g of moist soil was washed

on 250 lm sieves and the retained root material oven-dried

at 55 °C. Dried roots were ground to pass through a 0.2 mm

sieve for further analysis. These root measurements underes-

timate corn root biomass due to the spring sampling between

corn rows and switchgrass crowns (Allmaras & Nelson, 1971;

Johnson et al., 2011), but represent an estimate of standing

root stock.

Particulate organic matter (POM) was obtained using a mod-

ified method of Cambardella & Elliot (1992). Briefly, after the

addition of 0.1 M sodium hexametaphosphate, soil samples

were shaken 16 h and separated over a 53 lm sieve

(POM > 53 lm). POM was oven-dried at 55 °C and ground to

pass through a 0.2 mm sieve for C and N analyses.

Total C and N concentrations and d13C were determined

using a Europa Scientific automated nitrogen carbon analyzer

(ANCA-NT) coupled to a Europa 20-20 stable isotope analyzer

continuous flow isotope ratio mass spectrometer (Europa Scien-

tific Ltd., Crewe, England). Samples were run in duplicate with

an analytical error of 0.14 &.

The d13C was calculated using the equation

@13C ¼ 13RSample � 13RStandard

13RStandard

� �
1000

where Rsample is the ratio of d13C/d12C in the soil, and Rstandard

is the ratio of d13C/d12C international Pee Dee Belemnite

(PDB).

We partitioned C3- and C4-derived C using the stable iso-

tope mixing model approach (Balesdent & Balabane, 1992):

F ¼ ds � dc3
dc4 � dc3

where ds = d13C of the soil, dC3 = d13C of C3 (�26.78) and

dC4 = d13C of the C4 vegetation (�12.94).

Statistics

Data were analyzed using a split-split plot design in Proc

GLMIX in SAS (Cary, NC). Fixed main treatment effects were

crop (corn vs. switchgrass), N(crop) and harvest(crop) within

each depth. Replicate, replicate9plant and replicate9N(crop)

were considered random effects. Differences between treat-

ment means were estimated with predetermined comparisons

using ESTIMATE statements (switchgrass 0N vs. 60N, 0N vs.

120N, 60N vs. 120N and August vs. Postfrost harvest; NT-

corn 60N vs. 120N, 60N vs. 180N, 60N vs. 180N and residue

retained vs. residue removed). We report least-squared means

and standard errors with an n of 3. Differences with a

P-value of <0.05 were considered significant, and significance

level <0.10 noted in the text. T-tests were used to compare

crop effects within N rate for aboveground and belowground

C and N.

Results

Aboveground and belowground biomass, C and N

Aboveground biomass in switchgrass ranged from 3.13

to 11.20 Mg ha�1 (Table 1) and 8.30 to 12.43 Mg ha�1

for NT-corn (Table 2). Increasing N fertilizer rate

increased aboveground biomass, and biomass C and N

of both crops (P < 0.0001 and P = 0.001, Tables 1 and

2). Residue removal had no effect on aboveground C in

NT-corn (Table 2). However, postfrost harvest increased

switchgrass aboveground biomass C by 14% (Table 1,

P = 0.04) and reduced aboveground biomass N by 33%

compared to an August harvest (0.033 vs.

0.049 Mg N ha�1). There was no significant difference

between switchgrass and NT-corn in aboveground bio-

mass C when compared within the same N rate for the

60 (switchgrass = 3.39 Mg C ha�1 vs. NT-corn

Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Global Change Biology Bioenergy
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Table 1 Aboveground and belowground (0–150 cm) least-squared means for biomass (Mg ha�1), C and N stocks (Mg C or N ha�1)

for switchgrass cultivar Cave-in-Rock under 0, 60 and 120 kg N ha�1 fertilizer rates and August or postfrost (PF) harvest treatments.

Aboveground yields are averaged from 1998 to 2007. Belowground biomass is from spring 2007 only. Lowercase letters indicate dif-

ferences between N treatments, and uppercase letters differences between harvest treatments. Italics indicate N or harvest treatment

averages

Switchgrass

Harvest average0 kg N ha�1 60 kg N ha�1 120 kg N ha�1

Aboveground biomass August 3.36 7.07 9.25 6.56 A

PF 3.13 8.27 11.20 7.53 A

Avg 3.24 a 7.67 b 10.22 c

Aboveground biomass C August 1.46 3.12 4.08 2.89 A

PF 1.38 3.67 5.04 3.36 B

Avg 1.42 a 3.39 ab 4.55 b

Aboveground biomass N August 0.02 0.04 0.07 0.05 A

PF 0.01 0.03 0.07 0.03 B

Avg 0.02 a 0.03 b 0.07 c

Belowground biomass August 18.80 23.15 20.17 20.70 A

PF 19.09 30.68 27.69 23.31 A

Avg 18.94 a 26.92 b 20.17 ab

Belowground biomass C August 6.17 7.95 5.10 6.41 A

PF 5.54 9.37 5.76 6.89 A

Avg 5.85 ab 8.66 b 5.43 a

Belowground biomass N August 0.07 0.09 0.11 0.09 A

PF 0.06 0.12 0.13 0.10 A

Avg 0.07 a 0.11 b 0.12 b

Table 2 Aboveground and belowground (0–150 cm) biomass (Mg ha�1), biomass C and N (Mg C or N ha�1) least-squared means

for NT-corn under 60, 120 and 180 kg N ha�1 fertilizer and no residue removed (NRR) or residue removed (RR) harvest treatments

in 2006. Aboveground yields are averaged from 2006. Belowground biomass is from spring 2007 only. Lowercase letters indicate dif-

ference between N treatments, and uppercase letters differences between harvest treatments. Italics indicate N or harvest treatment

averages

NT-Corn

Harvest average60 kg N ha�1 120 kg N ha�1 180 kg N ha�1

Aboveground biomass NRR 9.51 12.26 12.43 11.40 A

RR 8.30 11.17 12.18 10.55 A

Avg 8.91 a 11.71 b 12.30 b

Aboveground biomass C NRR 3.72 4.42 5.28 4.48 A

RR 3.43 4.60 5.03 4.36 A

Avg 3.58 a 4.51 ab 5.15 b

Aboveground biomass N NRR 0.07 0.11 0.14 0.11 A

RR 0.06 0.10 0.14 0.10 A

Avg 0.06 a 0.11 b 0.14 c

Belowground biomass NRR 5.81 10.34 9.55 8.57 A

RR 6.28 5.08 6.99 6.12 A

Avg 6.04 a 7.71 a 8.27 a

Belowground biomass C NRR 1.31 1.69 1.90 1.63 A

RR 1.20 1.00 1.36 1.19 B

Avg 1.25 a 1.35 a 1.63 a

Belowground biomass N NRR 0.05 0.08 0.09 0.07 A

RR 0.05 0.04 0.06 0.05 B

Avg 0.05 a 0.06 ab 0.08 b
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3.58 Mg C ha�1, P = 0.787) and 120 kg N ha�1 rates

(switchgrass = 4.55 Mg C ha vs. NT-corn

4.51 kg N ha�1, P = 0.938). However, NT-corn had 2.4

times more aboveground N stocks at 60 kg N ha�1 and

0.7 times more N stocks at 120 kg N ha�1 compared to

switchgrass (P = 0.01, P = 0.03, respectively).

Under switchgrass, moderate N fertilizer

(60 kg N ha�1) maximized belowground root biomass

C, 8.66 Mg C ha�1 (0–150 cm, Table 1) but at

120 kg N ha�1, belowground root biomass C was the

lowest of all treatments at 5.43 Mg C ha�1 (Table 1).

There was no effect of increasing N fertilizer rate on

belowground root biomass C of NT-corn (Table 2). N

fertilizer increased belowground root biomass N stocks

under both switchgrass (P = 0.04, Table 1) and margin-

ally under NT-corn (P = 0.098, Table 2).

When compared within the same N rate, switch-

grass had 6.6 and 4.0 times more belowground root

biomass C compared to NT-corn in the 60 and

120 kg N ha�1 rate, respectively (P = 0.001, P = 0.062).

Switchgrass had more belowground root biomass N

(2.6 times) when compared within N rate to NT-corn

in the 60 kg N ha�1 rate (P = 0.007), but not in the

120 kg N ha�1 rate (P = .216). Harvest (postfrost vs.

August) had no effect on total belowground root C or

N stocks (0-150 cm). Long-term residue removal in

NT-corn reduced belowground root biomass C by 37%

(P = 0.022) and N by 48% (P = 0.018) compared to no-

residue removal (Table 2).

Depth distribution of belowground root biomass C and
chemistry

Nitrogen and harvest effects on belowground root bio-

mass C were predominantly observed in the 0–60 cm

depths (Fig. 1). Moderate N fertilization

(60 kg N ha�1) enhanced switchgrass belowground

root biomass C in the 10–30 and 30–60 cm depths

(Fig. 1a). Increasing N fertilization had little effect on

belowground root biomass C under NT-corn, except at

120–150 cm, where belowground root biomass C was

greater under fertilizer treatments compared to the

60 kg N ha�1 fertilization rate (P = 0.022, Fig. 1b).

Under switchgrass, postfrost harvest increased below-

ground root biomass C only in 10–30 cm depth

(P = 0.030, Fig. 1c). Corn residue removal decreased

root biomass C by 30% in the 0–30 cm depth

(P = 0.030, Fig. 1d).

Belowground biomass from switchgrass roots had a

much greater average C:N ratio (80.2) compared to

NT-corn (26.0, P > 0.049), which increased with depth

for both crops (Fig. 2a,b). Increasing N fertilizer rate

decreased switchgrass root C:N, with the

120 kg N ha�1 rate significantly lower (53.2) than 0 or

60 kg N ha�1 (98.2 and 89.3, respectively) averaged

over the soil profile (P < 0.001). The same was

observed under NT-corn, with the C:N ratio under

180 kg N ha�1 significantly lower (26.2) than the

60 kg N ha�1 (33.4) averaged over the soil profile

(P = 0.006). Postfrost harvest of switchgrass signifi-

cantly decreased root C:N compared to August har-

vest in the 30–60 and 60–90 cm depths (Fig. 2c), but

not averaged over the soil profile (P = 0.497). Residue

removal did not affect C:N under NT-corn (P = 0.467,

Fig. 2d).

(a) (b)

(c) (d)

Fig. 1 Least-squared means of belowground root biomass C

(Mg C ha�1), for switchgrass under 0, 60 and 120 kg N ha�1

fertilizer (a) and August or postfrost harvest treatments (c) and

NT-corn under 60, 120 and 180 kg N ha�1 fertilizer (b) and no

residue removed (NRR) or residue removed (RR) harvest treat-

ments (d). Lowercase letters indicate difference between N or

harvest treatments within depth. Error bars represent standard

errors (n = 3).
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Particulate organic matter carbon

The majority of POM-C was observed in the 0–60 cm

depths (93–95%) with most treatment differences

observed in the 0–5 and 5–10 cm depths (Tables 3 and

4). However, these differences in many cases were large

enough to drive soil profile (0–150 cm) changes in

POM-C stocks. Surprisingly, there was no significant

difference between switchgrass and NT-corn in POM-C

(g POM C kg�1 soil) except for the 5–10 cm depth,

where switchgrass had 69% more POM-C (P = 0.034,

Table 3).

The middle N rate for both crops had the greatest

profile (0–150 cm) POM-C (NT-corn, 120 kg N ha�1

5.08 g POM-C kg�1 soil and switchgrass 60 kg N ha�1

6.28 g POM-C kg�1 soil) and POM-C was lowest under

the high N rate. These differences were driven by N

treatment effects in the 0–5 and 5–10 cm depths for each

crop. Switchgrass had the greatest POM-C at the

60 kg N ha�1 rate in both the 0–5 and 5–10 cm depths

(3.61 and 1.53 g POM-C kg�1 soil) compared to the

120 N rate (2.08 and 1.21 g POM-C kg�1 soil)

(P = 0.032, and 0.011, respectively). Under NT-corn,

greater profile POM-C under the middle N rate

(120 kg N ha�1, 5.08 g POM-C kg�1 soil) compared to

the 180 kg N ha�1 rate (3.62 g POM-C kg�1 soil,

P = 0.035) was also due to smaller POM-C stocks in the

0–5 and 5–10 cm depths under the 180 kg N ha�1 rate.

Residue removal from NT-corn decreased POM-C in

the 0–5 cm depth compared to no-residue removal

(P = 0.047), resulting in a 22% decrease in POM-C

throughout the profile (RR=3.79, NRR=4.89 g POM-

C kg�1soil, P = 0.0376, Table 3). Switchgrass postfrost

harvest increased POM-C compared to August harvest

in the top three depths although it was only significant

in the 10–30 cm depth (P = 0.007), a trend that contin-

ued for POM-C throughout the soil profile (P = 0.071,

Table 3). Switchgrass had greater POM C:N compared

to NT-corn in the top three depths (Table 5).

Belowground root biomass C contributions to SOC

The POM-C stocks under both NT-corn and switchgrass

were proportional to belowground root biomass C with

R2 = 0.72 for NT-corn and R2 = 0.70 for switchgrass

(Fig. 3). However, NT-corn had a three times greater

conversion to POM-C per unit root biomass compared

to switchgrass (Fig. 3).

Discussion

Perennial bioenergy crops contribute substantially more

biomass belowground compared to annual crops, can

sequester more soil C and, consequently, have a greater

greenhouse gas offset potential compared to conven-

tional corn (Davis et al., 2011). This study illustrates two

contrasting scenarios of plant allocation, decomposition

and incorporation into soil organic matter. Switchgrass

produced more belowground root biomass C (5.5–
9.3 Mg C ha�1) with a greater C:N ratio compared to

NT-corn (1.2–1.9 Mg C ha�1) with a lower C:N ratio,

reflecting known differences between crops in below-

ground root biomass production and tissue chemistry

(Johnson et al., 2007; Garten et al., 2011; Ontl et al.,

2013). This confirmed our hypothesis that overall contri-

butions to belowground C pools would be greater

(a) (b)

(c) (d)

Fig. 2 Belowground root biomass C:N ratios least-squared

means, for switchgrass under 0, 60 and 120 kg N ha�1 fertilizer

(a) and August or postfrost harvest treatments (c) and NT-corn

under 60, 120 and 180 kg N ha�1 fertilizer (b) and no residue

removed (NRR) or residue removed (RR) harvest treatments

(d). Lowercase letters indicate difference between N or harvest

treatments within depth. Error bars represent standard errors

(n = 3).
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under switchgrass due to greater belowground root bio-

mass. Our measured belowground root biomass under-

estimated the actual NT-corn root production and

reflected a root litter pool due to the spring sampling.

Measured root biomass does not account for rhizodepo-

sition, which can contribute an additional 2.5–6 times

Table 3 Least-squared means for C4-POM (g C kg�1 soil) for switchgrass harvested in August or in postfrost (PF) under three N

treatments (0, 60, 120 kg N ha�1) and NT-corn with (RR) or without residue removal (NRR) under three N treatments (60, 120,

180 kg N ha�1). Bold values indicate significant main effects or contrasts between N fertilizer rates or harvest within crop. Italics indi-

cate N or harvest treatment averages

Plant N Harvest

0–5 cm 5–10 cm 10–30 cm 30–60 cm 60–90 cm 90–120 cm 120–150 cm 0–150 cm

g C4-POMC kg�1 soil

Switchgrass 0 August 2.49 1.02 0.47 0.20 0.10 0.06 0.04 4.38

PF 3.70 1.38 0.59 0.27 0.15 0.08 0.06 6.23

0 Average 3.10 1.20 0.53 0.23 0.12 0.07 0.05 5.31

60 August 3.00 1.42 0.55 0.28 0.13 0.09 0.07 5.53

PF 4.21 1.63 0.74 0.22 0.11 0.07 0.06 7.04

60 Average 3.61 1.53 0.65 0.25 0.12 0.08 0.07 6.28

120 August 2.26 1.37 0.80 0.13 0.07 0.07 0.05 4.75

PF 1.90 1.05 0.85 0.15 0.11 0.07 0.05 4.19

120 Average 2.08 1.21 0.83 0.14 0.09 0.07 0.05 4.47

August Average 2.59 1.27 0.61 0.20 0.10 0.07 0.05 4.89

Postfrost Average 3.27 1.36 0.73 0.21 0.12 0.07 0.06 5.82

Switchgrass average 2.93 1.31 0.67 0.21 0.11 0.07 0.06 5.35

NT-Corn 60 NRR 3.82 0.64 0.28 0.15 0.11 0.07 0.05 5.12

RR 2.01 0.68 0.33 0.24 0.12 0.06 0.04 3.50

60 Average 2.92 0.66 0.31 0.20 0.12 0.07 0.05 4.31

120 NRR 3.89 0.96 0.44 0.21 0.13 0.07 0.05 5.76

RR 2.75 0.88 0.47 0.13 0.11 0.03 0.03 4.41

120 Average 3.32 0.92 0.46 0.17 0.12 0.05 0.04 5.08

180 NRR 2.30 0.72 0.31 0.21 0.13 0.06 0.06 3.78

RR 2.07 0.75 0.26 0.20 0.08 0.06 0.03 3.46

180 Average 2.19 0.74 0.28 0.20 0.10 0.06 0.05 3.62

NRR Average 3.34 0.78 0.34 0.19 0.12 0.07 0.05 4.89

RR Average 2.28 0.77 0.35 0.19 0.10 0.05 0.03 3.79

NT-Corn Average 2.81 0.77 0.35 0.19 0.11 0.06 0.04 4.34

Table 4 Main effects, interactions and effect contrasts for C4-POM (g C kg�1 soil) for each depth and the soil profile (0–150 cm) for

switchgrass harvested in August or postfrost under three N treatments (0, 60, 120 kg N ha�1) and NT-corn with or without residue

removal under three N treatments (60, 120, 180 kg N ha�1). Bold values indicate significant main effects or contrasts between N fertil-

izer rates or harvest within crop. Italics indicate P < 0.10

Effect Num DF Den DF

0–5 m 5–10 cm 10–30 cm 30–60 cm 0–150 cm

P-value

Crop 1 2 0.770 0.034 0.148 0.716 0.230

N(Crop) 4 8 0.108 0.019 0.644 0.426 0.043

Harvest(Crop) 2 12 0.066 0.559 0.023 0.885 0.031

N*harvest(Crop) 4 12 0.426 0.037 0.485 0.073 0.229

SG 0 vs. 60 0.413 0.010 0.615 0.809 0.129

SG 0 vs. 120 0.123 0.933 0.212 0.146 0.186

SG 60 vs. 120 0.032 0.011 0.429 0.100 0.014

Corn 60 vs. 120 0.511 0.026 0.519 0.728 0.218

Corn 60 vs. 180 0.248 0.448 0.918 0.893 0.265

Corn 120 vs. 180 0.089 0.090 0.457 0.631 0.035

Switchgrass harvest August vs. Postfrost 0.179 0.291 0.007 0.640 0.071

NT-corn residue removal 0.048 0.978 0.748 0.898 0.038
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root biomass C to belowground C stocks (Molina et al.,

2001).

Despite smaller belowground root biomass C stocks

under NT-corn, C was incorporated into the POM frac-

tion three times more per unit of root biomass resulting

in no difference in POM-C stocks between the two crops

when averaged over the 150 cm soil profile. Faster

decomposition of annual corn belowground root bio-

mass into SOC would explain the similar SOC gains

under switchgrass and NT-corn after conversion from

conventional tillage corn at this site (Follett et al., 2012).

Agricultural management affects switchgrass allocation

Agricultural management significantly altered plant

allocation and belowground productivity under switch-

grass. The N fertilizer application rate of 120 kg N ha�1

maximized aboveground productivity (4.5 Mg C ha�1),

but minimized belowground root biomass C

(5.4 Mg C ha�1). A moderate fertilizer rate of

60 kg N ha�1 maximized belowground root biomass C

(8.7 Mg C ha�1); a pattern that has been observed in

other studies, although at higher N fertilizer rates. Gar-

ten et al. (2011) found fertilizer application of

67 kg N ha�1 maximized root biomass measured in

April (19 Mg ha�1), but was not greater than biomass

under the highest N rate of 202 kg N ha�1. Heggen-

staller et al. (2009) found that a N application at

140 kg N ha�1 maximized root production and root N

content in Cave-in-Rock in Iowa compared to a N appli-

cation rate of 220 kg N ha�1. However, Ma et al. (2000)

found that N fertilizer did not impact belowground root

productivity at 112 and 224 kg N ha�1 in AL.

Both N fertilizer and harvest timing altered below-

ground root biomass distribution within the soil profile.

Greater belowground root biomass under the

60 kg N ha�1 treatment was due to an increase in the

10–60 cm depth, suggesting increased belowground

production for additional nutrient acquisition. Garten

et al. (2011) found increasing N demand under higher

rates of N fertilization (67 and 202 kg N ha�1). Reduced

belowground root biomass under the 120 compared to

the 60 kg N ha�1 rate suggests allocation of more N to

aboveground compared to belowground productivity, a

well-documented finding consistent with other studies

(Heggenstaller et al., 2009; Garten et al., 2011). Although

there was less belowground biomass under the

120 kg N ha�1 rate, the switchgrass root C:N ratio

decreased by half compared to the 0N treatment (98.2

vs. 53.2), an effect also observed in other belowground

studies (Ma et al., 2000; Garten et al., 2011). Fertilization

with 202 kg N ha�1 reduced root C:N ratio (55.1 aver-

aged over live and dead 0–90 cm) compared to

0 kg N ha�1 (107.6) under 5-years-old Alamo switch-

grass grown in Tennessee (Garten et al., 2011). The C:N

ratio was lower under 224 kg N ha�1 (33) compared to

0 or 112 kg N ha�1 (59) under 3-years-old Alamo

switchgrass plants in Alabama (0–3 m, Ma et al., 2000).

Switchgrass harvest after senescence can significantly

reduce aboveground nutrient content, providing a better

biofuel feedstock (Vogel et al., 2002; Johnson et al. 2014)

and allowing nutrient recycling (Zegada-Lizarazu et al.,

2012). Postfrost harvest increased aboveground biomass

C (3.3 vs. 2.9 Mg C ha�1) and decreased aboveground

biomass N (43 to 33 kg N ha�1). Although we did not

observe harvest effects on total belowground root bio-

mass C or N, switchgrass harvested postfrost produced

greater belowground root biomass, and 50% more N

compared to August harvest in the 10–30 cm depth,

suggesting additional C and N storage belowground

occurs during senescence. Nutrient storage occurs in

crowns (Heggenstaller et al., 2009; Garten et al., 2010,

2011), but our data illustrate that root biomass is also

Table 5 Least-squared means for the C:N ratio of POM under

switchgrass and corn averaged across N rate and harvest.

Asterisks indicate significant differences between switchgrass

and NT-corn at the 0.05 level

Depth (cm)

Switchgrass Corn

C:N

0–5 18.5 15.3*

5–10 17.8 12.8*

10–30 15.1 10.0*

30–60 11.9 10.2

60–90 10.2 9.7

90–120 8.8 7.1

120–150 7.5 5.6

Fig. 3 POM C (g C kg�1 soil) as a function of belowground

root biomass C (g C cm�3 soil) for NT-corn at 60, 120 and

180 kg N ha�1 and switchgrass at 0, 60 and 120 kg N ha�1.

Error bars represent standard errors (n = 3).
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important for N storage. Cumulative C and N storage

from root turnover also contributes to soil C stocks. Gar-

ten et al. (2011) found that dead fine roots increased

from 5 to 13% of total plant biomass C from April to

November indicating substantial mortality over the

growing season. Increased root turnover in addition to

greater root biomass under the postfrost harvest treat-

ment likely contributed to the observed greater POM-C

stocks in the 10–30 cm depth.

Harvest and N treatments that maximized below-

ground root biomass incorporated more belowground

root biomass C into the soil C pool after 9 years. The

moderate fertilizer rate of 60 kg N ha�1 maximized

POM-C in the top two depths. Postfrost harvest resulted

in 18% more POM-C on average compared to August

harvest. The POM under switchgrass had a greater C:N

ratio in the top 30 cm compared to NT-corn indicating

the incorporation of more recalcitrant switchgrass-

derived C into soil organic matter. The high below-

ground productivity of switchgrass roots is the primary

reason switchgrass can sequester soil C and improve

soil quality (Follett et al., 2012; Stewart et al., 2015b).

These results show agricultural management practices

that maximize aboveground productivity, such as

higher N fertilization, may not maximize SOC seques-

tration through changes in plant allocation.

Root litter decomposition and N effects

Despite switchgrass having 5 times more belowground

root biomass compared to NT-corn, there were only

slight differences between switchgrass and NT-corn in

POM-C confirming our hypothesis that the annual pro-

duction and death of corn root biomass would provide

a greater contribution to particulate organic matter. This

difference suggests slower nutrient cycling under

switchgrass with the accumulation of perennial below-

ground root biomass and under corn, faster and more

complete decomposition of belowground root biomass.

Residue decomposition generally decreases with

increasing C:N ratio and switchgrass had more than

double the C:N ratio compared to NT-corn. The rela-

tively low C:N ratio of corn belowground root biomass

measured here compared to other studies (Johnson

et al., 2007) is probably due to decomposition from fall

harvest to early spring sampling. Faster decomposition

of higher N residues is well documented (Hobbie, 2005;

Johnson et al., 2007; Adair et al., 2008; Cornwell et al.,

2008).

N fertilizer effects on soil C storage are a function of

indirect effects on C inputs and decomposition. The

highest rate of fertilizer application decreased surface

POM-C under both NT-corn and switchgrass. This

reduction is most likely due to increased decomposition

with additional N fertilizer, because belowground root

biomass showed no significant reduction with N fertil-

izer in the surface depths. However, the highest rate of

N addition decreased belowground root biomass C:N,

which could further accelerate belowground root bio-

mass decomposition. Initial decomposition rate is fre-

quently positively related to residue N content because

microbial substrate use can be N limited at low sub-

strate N concentrations (Hobbie et al., 2012). Subsequent

analyses at this site found no difference in NT-corn

POM-C stocks across N fertilizer rates (Osborne et al.,

2014; Jin et al., 2015). However, differences between our

results and theirs likely stem from our values only

including C4 POM-C from isotope partitioning, which

would identify a smaller C pool from recent crop input.

Residue removal effects in NT-corn

Although residue removal did not significantly affect

aboveground productivity, we show reduced below-

ground root biomass C (37%) and N (48%) relative to

no-residue removal which resulted in a profile-wide

decrease in POM-C. Continued reductions in below-

ground root biomass C and N input could lead to

reduced C and N stocks. Jin et al. (2015) also found no

impact of residue removal on corn yields from 1998 to

2011 on these plots, although earlier samplings did find

a small reduction in yield (Varvel et al., 2008). They sug-

gest that soil moisture conservation under the no resi-

due removed treatment during the drought conditions

during the early part of the study boosted yields com-

pared to residue removal treatments. Halvorson & Ste-

wart (2015) found a decrease in soil C and no N accrual

after 7 years of residue removal in irrigated NT-corn in

the semiarid Great Plains despite an increase in grain

yield compared to no-residue removal. These results

confirm that deterioration in soil quality under residue

removal can be evident without crop yield declines (Jin

et al., 2015; Stewart et al., 2015b), although grain yield

declines under residue removal have been well docu-

mented (Wilhelm et al., 2004) .

The reduction in belowground root biomass was pri-

marily observed in the surface depth (0–5 cm) and cor-

responded to a reduction in aggregate stability, soil

microbial biomass and soil quality (Jin et al., 2015; Ste-

wart et al., 2015b). Roots act as nucleation sites for the

formation of soil aggregates (Denef et al., 2004; Six et al.,

2006) and are the primary source of belowground C in

NT systems (Johnson et al., 2006). Many authors docu-

ment a decrease in soil C pools (aggregates and POM)

as a result of stover removal that has typically been

assumed to be a result of reduced aboveground C

inputs (Blanco-Canqui, 2013; Osborne et al., 2014; Jin

et al., 2015). Additional losses of C inputs through
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reduced root production could further deplete the soil

resource.

Belowground C and SOC stocks

Belowground C stocks are important to quantify and

this study illustrates two contrasting scenarios that have

the potential for substantial belowground contributions

to SOC (Follett et al., 2012). Annual NT-corn produced

belowground root biomass C proportional to above-

ground biomass C with a low C:N ratio and a relatively

quick decomposition trajectory into SOC. Under switch-

grass, perennial roots built substantial belowground

root biomass with a higher C:N ratio and slower decom-

position and incorporation as POM-C. Despite these dif-

ferences in C and N cycling, NT-corn had a greater

conversion to POM-C per unit root biomass such that

after 9 years, switchgrass POM-C stocks were similar to

NT-corn (Table 3). These results may explain why no

differences in SOC sequestration between NT-corn and

switchgrass were observed in the soil profile after the

initial 9 years (Follett et al., 2012). Aboveground bio-

mass production can be a good predictor of SOC

sequestration, but previous work on this site found rela-

tively poor relationships with aboveground biomass

production (R2 = 0.39) (Follett et al., 2012). Adding

belowground root biomass C increased R2 of SOC

change (0–30 cm, from baseline) to 0.79 for NT-corn and

0.97 for switchgrass (Fig. 4).

N fertilizer can modify nutrient cycling through

changing aboveground and belowground biomass allo-

cation patterns and accelerating decomposition directly

and indirectly. A moderate fertilizer application

(60 kg N ha�1) maximized switchgrass belowground

root biomass production and POM-C. Higher fertiliza-

tion rates minimized belowground production and C:N

ratio, potentially increasing root decomposition, result-

ing in the lowest POM-C stocks. Nitrogen fertilization

had no effect on the belowground biomass C of NT-corn

but the highest N rate (180 kg N ha�1) decreased POM-

C. Plant allocation patterns and tissue chemistry will

have long-term impacts on nutrient cycling in these sys-

tems and are rarely investigated over fertility gradients

(Garten et al., 2011).

Modeling simulations using the DAYCent model

across the Corn Belt region show substantial ecosystem

service benefits could accrue from planting perennial

bioenergy species on marginal land, including up to a

473% reduction in greenhouse gas emissions and 22%

reduction in N leaching compared to conventional corn

production (Davis et al., 2011). Despite the potential of

perennial bioenergy crops such as switchgrass to con-

tribute to belowground biomass and SOC sequestration,

agricultural management such as harvest timing and N

fertilization will moderate this effect. Simulation models

will need to incorporate feedbacks between plant alloca-

tion, belowground biomass chemistry and decomposi-

tion to accurately predict land-use effects from

bioenergy production.
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