39 research outputs found
Mice Deficient in GEM GTPase Show Abnormal Glucose Homeostasis Due to Defects in Beta-Cell Calcium Handling
Glucose-stimulated insulin secretion from beta-cells is a tightly regulated process that requires calcium flux to trigger exocytosis of insulin-containing vesicles. Regulation of calcium handling in beta-cells remains incompletely understood. Gem, a member of the RGK (Rad/Gem/Kir) family regulates calcium channel handling in other cell types, and Gem over-expression inhibits insulin release in insulin-secreting Min6 cells. The aim of this study was to explore the role of Gem in insulin secretion. We hypothesised that Gem may regulate insulin secretion and thus affect glucose tolerance in vivo
Hormone-replacement therapy influences gene expression profiles and is associated with breast-cancer prognosis: a cohort study
BACKGROUND: Postmenopausal hormone-replacement therapy (HRT) increases breast-cancer risk. The influence of HRT on the biology of the primary tumor, however, is not well understood. METHODS: We obtained breast-cancer gene expression profiles using Affymetrix human genome U133A arrays. We examined the relationship between HRT-regulated gene profiles, tumor characteristics, and recurrence-free survival in 72 postmenopausal women. RESULTS: HRT use in patients with estrogen receptor (ER) protein positive tumors (n = 72) was associated with an altered regulation of 276 genes. Expression profiles based on these genes clustered ER-positive tumors into two molecular subclasses, one of which was associated with HRT use and had significantly better recurrence free survival despite lower ER levels. A comparison with external data suggested that gene regulation in tumors associated with HRT was negatively correlated with gene regulation induced by short-term estrogen exposure, but positively correlated with the effect of tamoxifen. CONCLUSION: Our findings suggest that post-menopausal HRT use is associated with a distinct gene expression profile related to better recurrence-free survival and lower ER protein levels. Tentatively, HRT-associated gene expression in tumors resembles the effect of tamoxifen exposure on MCF-7 cells
Rasl11b Knock Down in Zebrafish Suppresses One-Eyed-Pinhead Mutant Phenotype
The EGF-CFC factor Oep/Cripto1/Frl1 has been implicated in embryogenesis and several human cancers. During vertebrate development, Oep/Cripto1/Frl1 has been shown to act as an essential coreceptor in the TGFβ/Nodal pathway, which is crucial for germ layer formation. Although studies in cell cultures suggest that Oep/Cripto1/Frl1 is also implicated in other pathways, in vivo it is solely regarded as a Nodal coreceptor. We have found that Rasl11b, a small GTPase belonging to a Ras subfamily of putative tumor suppressor genes, modulates Oep function in zebrafish independently of the Nodal pathway. rasl11b down regulation partially rescues endodermal and prechordal plate defects of zygotic oep−/− mutants (Zoep). Rasl11b inhibitory action was only observed in oep-deficient backgrounds, suggesting that normal oep expression prevents Rasl11b function. Surprisingly, rasl11b down regulation does not rescue mesendodermal defects in other Nodal pathway mutants, nor does it influence the phosphorylation state of the downstream effector Smad2. Thus, Rasl11b modifies the effect of Oep on mesendoderm development independently of the main known Oep output: the Nodal signaling pathway. This data suggests a new branch of Oep signaling that has implications for germ layer development, as well as for studies of Oep/Frl1/Cripto1 dysfunction, such as that found in tumors
Mediator complex (MED) 7: a biomarker associated with good prognosis in invasive breast cancer, especially ER+ luminal subtypes
Background: Mediator complex (MED) proteins have a key role in transcriptional regulation, some interacting with the oestrogen receptor (ER). Interrogation of the METABRIC cohort suggested that MED7 may regulate lymphovascular invasion (LVI). Thus MED7 expression was assessed in large breast cancer (BC) cohorts to determine clinicopathological significance.
Methods: MED7 gene expression was investigated in the METABRIC cohort (n = 1980) and externally validated using bc-GenExMiner v4.0. Immunohistochemical expression was assessed in the Nottingham primary BC series (n = 1280). Associations with clinicopathological variables and patient outcome were evaluated.
Results: High MED7 mRNA and protein expression was associated with good prognostic factors: low grade, smaller tumour size, good NPI, positive hormone receptor status (p < 0.001), and negative LVI (p = 0.04) status. Higher MED7 protein expression was associated with improved BC-specific survival within the whole cohort and ER+/luminal subgroup. Pooled MED7 gene expression data in the external validation cohort confirmed association with better survival, corroborating with the protein expression. On multivariate analysis, MED7 protein was independently predictive of longer BC-specific survival in the whole cohort and Luminal A subtype (p < 0.001).
Conclusions: MED7 is an important prognostic marker in BC, particularly in ER+luminal subtypes, associated with improved survival and warrants future functional analysis
Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases
Rem, Rem2, Rad, and Gem/Kir (RGK) represent a distinct GTPase family with largely unknown physiological functions. We report here that both Rem and Rad bind directly to Ca(2+) channel β-subunits (Ca(V)β) in vivo. No calcium currents are recorded from human embryonic kidney 293 cells coexpressing the L type Ca(2+) channel subunits Ca(V)1.2, Ca(V)β(2a), and Rem or Rad, but Ca(V)1.2 and Ca(V)β(2a) transfected cells elicit Ca(2+) channel currents in the absence of these small G proteins. Importantly, Ca(V)3 (T type) Ca(2+) channels, which do not require accessory subunits for ionic current expression, are not inhibited by expression of Rem. Rem is expressed in primary skeletal myoblasts and, when overexpressed in C2C12 myoblasts, wild-type Rem inhibits L type Ca(2+) channel activity. Deletion analysis demonstrates a critical role for the Rem C terminus in both regulation of functional Ca(2+) channel expression and β-subunit association. These results suggest that all members of the RGK GTPase family, via direct interaction with auxiliary β-subunits, serve as regulators of L type Ca(2+) channel activity. Thus, the RGK GTPase family may provide a mechanism for achieving cross talk between Ras-related GTPases and electrical signaling pathways
RLP, a novel Ras-like protein, is an immediate-early transforming growth factor-β (TGF-β) target gene that negatively regulates transcriptional activity induced by TGF-β
The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans
Gem Associates with Ezrin and Acts via the Rho-GAP Protein Gmip to Down-Regulate the Rho Pathway
Gem is a protein of the Ras superfamily that plays a role in regulating voltage-gated Ca(2+) channels and cytoskeletal reorganization. We now report that GTP-bound Gem interacts with the membrane–cytoskeleton linker protein Ezrin in its active state, and that Gem binds to active Ezrin in cells. The coexpression of Gem and Ezrin induces cell elongation accompanied by the disappearance of actin stress fibers and collapse of most focal adhesions. The same morphological effect is elicited when cells expressing Gem alone are stimulated with serum and requires the expression of ERM proteins. We show that endogenous Gem down-regulates the level of active RhoA and actin stress fibers. The effects of Gem downstream of Rho, i.e., ERM phosphorylation as well as disappearance of actin stress fibers and most focal adhesions, require the Rho-GAP partner of Gem, Gmip, a protein that is enriched in membranes under conditions in which Gem induced cell elongation. Our results suggest that Gem binds active Ezrin at the plasma membrane–cytoskeleton interface and acts via the Rho-GAP protein Gmip to down-regulate the processes dependent on the Rho pathway
