12,617 research outputs found

    Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A

    Get PDF
    Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage, cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when overexpressing active, but not inactive TPCNs, indicating that these channels can modulate endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies for neurodegenerative disorders associated with increased intracellular iron load

    Albumin-induced apoptosis of tubular cells is modulated by BASP1

    Full text link
    Albuminuria promotes tubular injury and cell death, and is associated with faster progression of chronic kidney disease (CKD) to end-stage renal disease. However, the molecular mechanisms regulating tubular cell death in response to albuminuria are not fully understood. Brain abundant signal protein 1 (BASP1) was recently shown to mediate glucose-induced apoptosis in tubular cells. We have studied the role of BASP1 in albumin-induced tubular cell death. BASP1 expression was studied in experimental puromycin aminonucleoside-induced nephrotic syndrome in rats and in human nephrotic syndrome. The role of BASP1 in albumin-induced apoptosis was studied in cultured human HK2 proximal tubular epithelial cells. Puromycin aminonucleoside induced proteinuria and increased total kidney BASP1 mRNA and protein expression. Immunohistochemistry localized the increased BASP1 to tubular cells. BASP1 expression colocalized with deoxynucleotidyl-transferase-mediated dUTP nick-end labeling staining for apoptotic cells. Increased tubular BASP1 expression was observed in human proteinuric nephropathy by immunohistochemistry, providing evidence for potential clinical relevance. In cultured tubular cells, albumin induced apoptosis and increased BASP1 mRNA and protein expression at 6–48 h. Confocal microscopy localized the increased BASP1 expression in albumin-treated cells mainly to the perinuclear area. A peripheral location near the cell membrane was more conspicuous in albumin-treated apoptotic cells, where it colocalized with actin. Inhibition of BASP1 expression by a BASP1 siRNA protected from albumin-induced apoptosis. In conclusion, albumin-induced apoptosis in tubular cells is BASP1-dependent. This information may be used to design novel therapeutic approaches to slow CKD progression based on protection of tubular cells from the adverse consequences of albuminuriaGrant support: FIS PS09/00447, PI13/00047, CP14/ 00133, ISCIII-RETIC, REDinREN/RD06/0016/and RD012/0021 FEDER funds, Comunidad de Madrid/CIFRA S2010/BMD-2378. Salary support: FIS to MDSN and ABS (Miguel Servet), Beatriz Fernandez-Fernandez (Rio Hortega). Programa Intensificación Actividad Investigadora (ISCIII/Agencia Laín-Entralgo/CM) to AO. IIS-FJD Biobank RD09/0076/0010

    How to Improve the Functional Capacity of Frail and Pre-Frail Elderly People? Health, Nutritional Status and Exercise Intervention. The EXERNET-Elder 3.0 Project

    Get PDF
    Aging is associated with the impairment of health and functional capacity, and physical exercise seems to be an effective tool in frailty prevention and treatment. The purpose of this study was to present the methodology used in the EXERNET-Elder 3.0 project that aims to evaluate the immediate and residual effects and of a multicomponent exercise training program called Elder-fit on frailty, fitness, body composition and quality of life, and also to analyse a possible dietary intake interaction according to health and metabolic status. A total of 110 frail and pre-frail elders participated in this study and were divided into a control group (CG = 52) and an intervention group (IG = 58). The IG performed a supervised multicomponent exercise training program of 6 months and 3 days per week, which included strength, endurance, balance, coordination and flexibility exercises, while the CG continued with their usual daily activities. Both groups received four speeches about healthy habits along the project. Four evaluations were performed: at baseline, after 3 months of training, at the end of the training program (6 months) and 4 months after the program had ended to examine the effects of detraining. Evaluating the efficacy, safety and feasibility of this program will help to develop efficacious physical interventions against frailty. Further, protocols should be described accurately to allow exercise programs to be successfully replicated

    Metabolomic analysis revealed differences between bovine cloned embryos with contrasting development abilities

    Get PDF
    Metabolomic analysis revealed differences between bovine cloned embryos with contrasting development abilities. 31. Colloque Scientifique de l'AET

    Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subject

    Get PDF
    Elucidating the potential mechanisms involved in the detrimental effect of excess body weight on insulin action is an important priority in counteracting obesity-associated diseases. The present study aimed to disentangle the epigenetic basis of insulin resistance by performing a genome-wide epigenetic analysis in visceral adipose tissue (VAT) from morbidly obese patients depending on the insulin sensitivity evaluated by the clamp technique. The global human methylome screening performed in VAT from 7 insulin-resistant (IR) and 5 insulin-sensitive (IS) morbidly obese patients (discovery cohort) analyzed using the Infinium HumanMethylation450 BeadChip array identified 982 CpG sites able to perfectly separate the IR and IS samples. The identified sites represented 538 unique genes, 10% of which were diabetes-associated genes. The current work identified novel IR-related genes epigenetically regulated in VAT, such as COL9A1, COL11A2, CD44, MUC4, ADAM2, IGF2BP1, GATA4, TET1, ZNF714, ADCY9, TBX5, and HDACM. The gene with the largest methylation fold-change and mapped by 5 differentially methylated CpG sites located in island/shore and promoter region was ZNF714. This gene presented lower methylation levels in IR than in IS patients in association with increased transcription levels, as further reflected in a validation cohort (n = 24; 11 IR and 13 IS). This study reveals, for the first time, a potential epigenetic regulation involved in the dysregulation of VAT that could predispose patients to insulin resistance and future type 2 diabetes in morbid obesity, providing a potential therapeutic target and biomarkers for counteracting this process

    Charm Production in DPMJET

    Full text link
    In this work, charm production in the {\sc dpmjet} hadronic jet simulation is compared to experimental data. Since the major application of {\sc dpmjet} is the simulation of cosmic ray-induced air showers, the version of the code integrated in the CORSIKA simulation package has been used for the comparison. Wherever necessary, adjustments have been made to improve agreement between simulation and data. With the availability of new muon/neutrino detectors that combine a large fiducial volume with large amounts of shielding, investigation of prompt muons and neutrinos from cosmic ray interactions will be feasible for the first time. Furthermore, above 100\gtrsim 100 TeV charmed particle decay becomes the dominant background for diffuse extraterrestrial neutrino flux searches. A reliable method to simulate charm production in high-energy proton-nucleon interactions is therefore required.Comment: 10 pages, to be published in JCA

    Repurposing rapid diagnostic tests to detect falsified vaccines in supply chains

    Get PDF
    Substandard (including degraded) and falsified (SF) vaccines are a relatively neglected issue with serious global implications for public health. This has been highlighted during the rapid and widespread rollout of COVID-19 vaccines. There has been increasing interest in devices to screen for SF non-vaccine medicines including tablets and capsules to empower inspectors and standardise surveillance. However, there has been very limited published research focussed on repurposing or developing new devices for screening for SF vaccines. To our knowledge, rapid diagnostic tests (RDTs) have not been used for this purpose but have important potential for detecting falsified vaccines. We performed a proof-in-principle study to investigate their diagnostic accuracy using a diverse range of RDT-vaccine/falsified vaccine surrogate pairs. In an initial assessment, we demonstrated the utility of four RDTs in detecting seven vaccines. Subsequently, the four RDTs were evaluated by three blinded assessors with seven vaccines and four falsified vaccines surrogates. The results provide preliminary data that RDTs could be used by multiple international organisations, national medicines regulators and vaccine manufacturers/distributors to screen for falsified vaccines in supply chains, aligned with the WHO global ‘Prevent, Detect and Respond’ strategy
    corecore