475 research outputs found
Fast spin exchange between two distant quantum dots
The Heisenberg exchange interaction between neighboring quantum dots allows
precise voltage control over spin dynamics, due to the ability to precisely
control the overlap of orbital wavefunctions by gate electrodes. This allows
the study of fundamental electronic phenomena and finds applications in quantum
information processing. Although spin-based quantum circuits based on
short-range exchange interactions are possible, the development of scalable,
longer-range coupling schemes constitutes a critical challenge within the
spin-qubit community. Approaches based on capacitative coupling and
cavity-mediated interactions effectively couple spin qubits to the charge
degree of freedom, making them susceptible to electrically-induced decoherence.
The alternative is to extend the range of the Heisenberg exchange interaction
by means of a quantum mediator. Here, we show that a multielectron quantum dot
with 50-100 electrons serves as an excellent mediator, preserving speed and
coherence of the resulting spin-spin coupling while providing several
functionalities that are of practical importance. These include speed (mediated
two-qubit rates up to several gigahertz), distance (of order of a micrometer),
voltage control, possibility of sweet spot operation (reducing susceptibility
to charge noise), and reversal of the interaction sign (useful for dynamical
decoupling from noise).Comment: 6 pages including 4 figures, plus 8 supplementary pages including 5
supplementary figure
Full coherent control of nuclear spins in an optically pumped single quantum dot
Highly polarized nuclear spins within a semiconductor quantum dot (QD) induce
effective magnetic (Overhauser) fields of up to several Tesla acting on the
electron spin or up to a few hundred mT for the hole spin. Recently this has
been recognized as a resource for intrinsic control of QD-based spin quantum
bits. However, only static long-lived Overhauser fields could be used. Here we
demonstrate fast redirection on the microsecond time-scale of Overhauser fields
of the order of 0.5 T experienced by a single electron spin in an optically
pumped GaAs quantum dot. This has been achieved using full coherent control of
an ensemble of 10^3-10^4 optically polarized nuclear spins by sequences of
short radio-frequency (rf) pulses. These results open the way to a new class of
experiments using rf techniques to achieve highly-correlated nuclear spins in
quantum dots, such as adiabatic demagnetization in the rotating frame leading
to sub-micro K nuclear spin temperatures, rapid adiabatic passage, and spin
squeezing
Magnetoplasmonic design rules for active magneto-optics
Light polarization rotators and non-reciprocal optical isolators are
essential building blocks in photonics technology. These macroscopic passive
devices are commonly based on magneto-optical Faraday and Kerr polarization
rotation. Magnetoplasmonics - the combination of magnetism and plasmonics - is
a promising route to bring these devices to the nanoscale. We introduce design
rules for highly tunable active magnetoplasmonic elements in which we can
tailor the amplitude and sign of the Kerr response over a broad spectral range
A Morphometric Survey among Three Iranian Horse Breeds with Multivariate Analysis
Three Iranian horse breeds, Turkoman, Caspian, and Kurdish, are the most important Iranian horse breeds which are well known in all around of the world because of their beauty, versatility, great stamina, and intelligence. Phenotypic characterization was used to identify and document the diversity within and between distinct breeds, based on their observable attributes. Phenotypic characterization and body biometric in 23 traits were measured in 191 purebred horses belonging to three breeds, i.e. Turkoman (70 horses), Kurdish (77 horses), and Caspian (44 horses). Caspian breed was sampled from the Provinces of Alborz and Gilan. Kurdish breed was sampled from the Provinces of Kurdistan, Kermanshah, and Hamadan. Turkoman breed was sampled from the Provinces of Golestan, Markazi, and Isfahan. Multivariate analysis of variance (MANOVA) was implemented. In addition, Canonical Discriminate Analysis (CDA), Principal Component Analysis (PCA), and Custer analysis were executed for assessing the relationship among the breeds. All statistical analysis was executed by SAS statistical program. The results of our investigation represented the breeds classification into 3 different classes (Caspian, Turkoman, and Kurdish) based on different morphometrical traits. Caspian breed with smaller size in most variables was detached clearly from the others with more distance than Kurdish and Turkoman breeds. The result showed that the most variably trait for classification was Hind Hoof Length. Adaptation with different environments causes difference in morphology and difference among breeds. We can identify and classify domestic population using PCA, CDA, and cluster analysis
Vertical-external-cavity surface-emitting lasers and quantum dot lasers
The use of cavity to manipulate photon emission of quantum dots (QDs) has
been opening unprecedented opportunities for realizing quantum functional
nanophotonic devices and also quantum information devices. In particular, in
the field of semiconductor lasers, QDs were introduced as a superior
alternative to quantum wells to suppress the temperature dependence of the
threshold current in vertical-external-cavity surface-emitting lasers
(VECSELs). In this work, a review of properties and development of
semiconductor VECSEL devices and QD laser devices is given. Based on the
features of VECSEL devices, the main emphasis is put on the recent development
of technological approach on semiconductor QD VECSELs. Then, from the viewpoint
of both single QD nanolaser and cavity quantum electrodynamics (QED), a
single-QD-cavity system resulting from the strong coupling of QD cavity is
presented. A difference of this review from the other existing works on
semiconductor VECSEL devices is that we will cover both the fundamental aspects
and technological approaches of QD VECSEL devices. And lastly, the presented
review here has provided a deep insight into useful guideline for the
development of QD VECSEL technology and future quantum functional nanophotonic
devices and monolithic photonic integrated circuits (MPhICs).Comment: 21 pages, 4 figures. arXiv admin note: text overlap with
arXiv:0904.369
Improved methodical approach for quantitative BRET analysis of G protein coupled receptor dimerization
G Protein Coupled Receptors (GPCR) can form dimers or higher ordered oligomers, the process of which can remarkably influence the physiological and pharmacological function of these receptors. Quantitative Bioluminescence Resonance Energy Transfer (qBRET) measurements are the gold standards to prove the direct physical interaction between the protomers of presumed GPCR dimers. For the correct interpretation of these experiments, the expression of the energy donor Renilla luciferase labeled receptor has to be maintained constant, which is hard to achieve in expression systems. To analyze the effects of non-constant donor expression on qBRET curves, we performed Monte Carlo simulations. Our results show that the decrease of donor expression can lead to saturation qBRET curves even if the interaction between donor and acceptor labeled receptors is non-specific leading to false interpretation of the dimerization state. We suggest here a new approach to the analysis of qBRET data, when the BRET ratio is plotted as a function of the acceptor labeled receptor expression at various donor receptor expression levels. With this method, we were able to distinguish between dimerization and non-specific interaction when the results of classical qBRET experiments were ambiguous. The simulation results were confirmed experimentally using rapamycin inducible heterodimerization system. We used this new method to investigate the dimerization of various GPCRs, and our data have confirmed the homodimerization of V2 vasopressin and CaSR calcium sensing receptors, whereas our data argue against the heterodimerization of these receptors with other studied GPCRs, including type I and II angiotensin, β2 adrenergic and CB1 cannabinoid receptors
Analysis of Negligence in field of Neonatology in Medical Commissions Office in Tehran, Iran
Background: Despite progression of medical’s science, patient’s complaints are increased. Analysis of risk factors cause to decrease complaints.Methods: This research is a retrospective study of medical malpractice cases in neonates’ from 2012 to2014 in Medical Commissions Office in Tehran province.Results: Among 171 cases were studied, 53 cases were in neonatal period. 30.1% was announced medical malpractice. Ages of most infants were 0-10 days (88.6%), 66% of babies were male, 69.8% had full-term gestation, 62.2% APGAR (Appearance, Pulse, Grimace, Activity, Respiration) score of neonates was above 7 and 73.5% of cases were the first child of the family. Most babies had cerebral palsy and asphyxia (20.7%), then respiratory distress syndrome (11.3%), furthermore shoulders dystocia and brachial plexus damage (7.5%). Ages of most plaintiffs (parents of neonates) were 30-39 years. Most of them were male, and their levels of education were high school and lower. The most cause of parent’s claim was medical mistake.Conclusion: Levels of parents’ education may relationship with complaints and increasing their awareness can effect to decrease these
Accurate characterization of tip-induced potential using electron interferometry
Using the tip of a scanning probe microscope as a local electrostatic gate
gives access to real space information on electrostatics as well as charge
transport at the nanoscale, provided that the tip-induced electrostatic
potential is well known. Here, we focus on the accurate characterization of the
tip potential, in a regime where the tip locally depletes a two-dimensional
electron gas (2DEG) hosted in a semiconductor heterostructure. Scanning the tip
in the vicinity of a quantum point contact defined in the 2DEG, we observe
Fabry-P\'erot interference fringes at low temperature in maps of the device
conductance. We exploit the evolution of these fringes with the tip voltage to
measure the change in depletion radius by electron interferometry. We find that
a semi-classical finite-element self-consistent model taking into account the
conical shape of the tip reaches a faithful correspondence with the
experimental data
Mathematical models for immunology:current state of the art and future research directions
The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years
- …
