108 research outputs found
Quantum coherence and population trapping in three-photon processes
The spectroscopic properties of a single, tightly trapped atom are studied,
when the electronic levels are coupled by three laser fields in an -shaped
configuration of levels, whereby a -type level system is weakly
coupled to a metastable state. We show that depending on the laser frequencies
the response can be tuned from coherent population trapping at two-photon
resonance to novel behaviour at three photon resonance, where the metastable
state can get almost unit occupation in a wide range of parameters. For certain
parameter regimes the system switches spontaneously between dissipative and
coherent dynamics over long time scales
Experiments towards quantum information with trapped Calcium ions
Ground state cooling and coherent manipulation of ions in an rf-(Paul) trap
is the prerequisite for quantum information experiments with trapped ions. With
resolved sideband cooling on the optical S1/2 - D5/2 quadrupole transition we
have cooled one and two 40Ca+ ions to the ground state of vibration with up to
99.9% probability. With a novel cooling scheme utilizing electromagnetically
induced transparency on the S1/2 - P1/2 manifold we have achieved simultaneous
ground state cooling of two motional sidebands 1.7 MHz apart. Starting from the
motional ground state we have demonstrated coherent quantum state manipulation
on the S1/2 - D5/2 quadrupole transition at 729 nm. Up to 30 Rabi oscillations
within 1.4 ms have been observed in the motional ground state and in the n=1
Fock state. In the linear quadrupole rf-trap with 700 kHz trap frequency along
the symmetry axis (2 MHz in radial direction) the minimum ion spacing is more
than 5 micron for up to 4 ions. We are able to cool two ions to the ground
state in the trap and individually address the ions with laser pulses through a
special optical addressing channel.Comment: Proceedings of the ICAP 2000, Firenz
Shot-noise limited monitoring and phase locking of the motion of a single trapped ion
We perform high-resolution real-time read-out of the motion of a single
trapped and laser-cooled Ba ion. By using an interferometric setup we
demonstrate shot-noise limited measurement of thermal oscillations with
resolution of 4 times the standard quantum limit. We apply the real-time
monitoring for phase control of the ion motion through a feedback loop,
suppressing the photon recoil-induced phase diffusion. Due to the spectral
narrowing in phase-locked mode, the coherent ion oscillation is measured with
resolution of about 0.3 times the standard quantum limit
Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror
A distant mirror leads to a vacuum-induced level shift in a laser-excited
atom. This effect has been measured with a single mirror 25 cm away from a
single, trapped barium ion. This dispersive action is the counterpart to the
mirror's dissipative effect, which has been shown earlier to effect a change in
the ion's spontaneous decay [J. Eschner et al., Nature 413, 495-498 (2001)].
The experimental data are well described by 8-level optical Bloch equations
which are amended to take into account the presence of the mirror according to
the model in [U. Dorner and P. Zoller, Phys. Rev. A 66, 023816 (2002)].
Observed deviations from simple dispersive behavior are attributed to
multi-level effects.Comment: version accepted by PR
Feedback cooling of a single trapped ion
Based on a real-time measurement of the motion of a single ion in a Paul
trap, we demonstrate its electro-mechanical cooling below the Doppler limit by
homodyne feedback control (cold damping). The feedback cooling results are well
described by a model based on a quantum mechanical Master Equation.Comment: 4 pages, 3 figure
Coupling a single atomic quantum bit to a high finesse optical cavity
The quadrupole S -- D optical transition of a single trapped
Ca ion, well suited for encoding a quantum bit of information, is
coherently coupled to the standing wave field of a high finesse cavity. The
coupling is verified by observing the ion's response to both spatial and
temporal variations of the intracavity field. We also achieve deterministic
coupling of the cavity mode to the ion's vibrational state by selectively
exciting vibrational state-changing transitions and by controlling the position
of the ion in the standing wave field with nanometer-precision
Resonance fluorescence of a trapped three-level atom
We investigate theoretically the spectrum of resonance fluorescence of a
harmonically trapped atom, whose internal transitions are --shaped and
driven at two-photon resonance by a pair of lasers, which cool the
center--of--mass motion. For this configuration, photons are scattered only due
to the mechanical effects of the quantum interaction between light and atom. We
study the spectrum of emission in the final stage of laser--cooling, when the
atomic center-of-mass dynamics is quantum mechanical and the size of the wave
packet is much smaller than the laser wavelength (Lamb--Dicke limit). We use
the spectral decomposition of the Liouville operator of the master equation for
the atomic density matrix and apply second order perturbation theory. We find
that the spectrum of resonance fluorescence is composed by two narrow sidebands
-- the Stokes and anti-Stokes components of the scattered light -- while all
other signals are in general orders of magnitude smaller. For very low
temperatures, however, the Mollow--type inelastic component of the spectrum
becomes visible. This exhibits novel features which allow further insight into
the quantum dynamics of the system. We provide a physical model that interprets
our results and discuss how one can recover temperature and cooling rate of the
atom from the spectrum. The behaviour of the considered system is compared with
the resonance fluorescence of a trapped atom whose internal transition consists
of two-levels.Comment: 11 pages, 4 Figure
Time-separated entangled light pulses from a single-atom emitter
The controlled interaction between a single, trapped, laser-driven atom and
the mode of a high-finesse optical cavity allows for the generation of
temporally separated, entangled light pulses. Entanglement between the
photon-number fluctuations of the pulses is created and mediated via the atomic
center-of-mass motion, which is interfaced with light through the mechanical
effect of atom-photon interaction. By means of a quantum noise analysis we
determine the correlation matrix which characterizes the entanglement, as a
function of the system parameters. The scheme is feasible in experimentally
accessible parameter regimes. It may be easily extended to the generation of
entangled pulses at different frequencies, even at vastly different
wavelengths.Comment: 17 pages, 5 figures. Modified version, to appear in the New Journal
of Physic
Quantum state engineering on an optical transition and decoherence in a Paul trap
A single Ca+ ion in a Paul trap has been cooled to the ground state of
vibration with up to 99.9% probability. Starting from this Fock state |n=0> we
have demonstrated coherent quantum state manipulation on an optical transition.
Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar
number of Rabi oscillations after preparation of the ion in the |n=1> Fock
state. The coherence of optical state manipulation is only limited by laser and
ambient magnetic field fluctuations. Motional heating has been measured to be
as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure
Motional sidebands and direct measurement of the cooling rate in the resonance fluorescence of a single trapped ion
Resonance fluorescence of a single trapped ion is spectrally analyzed using a
heterodyne technique. Motional sidebands due to the oscillation of the ion in
the harmonic trap potential are observed in the fluorescence spectrum. From the
width of the sidebands the cooling rate is obtained and found to be in
agreement with the theoretical prediction.Comment: 4 pages, 4 figures. Final version after minor changes, 1 figure
replaced; to be published in PRL, July 10, 200
- …
