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coupled by three laser fields in an N-shaped configuration of levels, whereby a �-type level system is weakly
coupled to a metastable state. We show that depending on the laser frequencies the response can be tuned from
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metastable state can get almost unit occupation in a wide range of parameters. For certain parameter regimes
the system switches spontaneously between dissipative and coherent dynamics over long time scales.
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I. INTRODUCTION

Atomic coherence has been demonstrated to be an effi-
cient tool for achieving control of the interaction between
electromagnetic fields and an atomic sample. It is at the ba-
sis, for instance, of the realization of quantum nonlinear op-
tical devices �1–3�, quantum phase gates �4–6�, atomic tran-
sistors �7�, and high-precision measurement techniques �8�.

A paradigmatic system exhibiting atomic coherence ef-
fects is the so-called � configuration of atomic levels, where
two �meta�stable states are coupled by two light fields to the
same excited state. When the coupling happens at two-
photon resonance, the system exhibits coherent population
trapping, by forming an atomic coherence between the two
stable states which decouples from the radiation �9�. More
complex configurations of levels offer richer dynamics,
whose understanding is relevant for applications of coherent
control of complex systems �10–12�. The interpretation of
their dynamics is often nontrivial, yet in some parameter
regimes analogies may be found with simpler level systems
which are better understood. This usually helps developing
tools for controlling and manipulating the quantum dynamics
of the more complex system through external parameters
�10,13,14�.

In this work we study how the dynamics of a � system is
modified by an additional coupling of one of the stable states
to a fourth, metastable state, as depicted in Fig. 1. Due to its
shape, we denote this configuration as N-level scheme. We
show that even weak coupling to the fourth level gives rise to
strong modification of the dynamics whenever the three-
photon resonance condition between the outer levels is ful-
filled. In particular, in certain parameter regimes the fourth
state exhibits quasi-unit occupation probability; in other situ-
ations the behavior switches from dissipative transient to co-
herent asymptotic dynamics.

Our analysis applies to alkalilike atomic species, as well
as to some alkaline-earth elements. We consider in particular
the case of a single 40Ca+ ion in a radiofrequency trap. For
this system we also study the effect of the oscillatory motion
on the dynamical behavior.

N-level schemes have been extensively studied in Refs.
�15–17� in the framework of electromagnetically induced ab-
sorption �18�. A peculiar difference of those systems with the
scheme we investigate here is the stability of the fourth level,
which critically affects the response of the system. As a re-
sult, the narrow lines at three-photon resonance, which we
report in this manuscript, cannot be explained in terms of
transfer of coherence �15,16�, but are instead intimately re-
lated to coherent population trapping, as we will argue. Co-
herent population trapping and dark resonances have been
discussed in Refs. �19,20� for a configuration similar to the
one we discuss here, with the important difference that in
Refs. �19,20� the unstable state can decay in all three stable
states. In this latter system, Doppler-free-like absorption
resonances �21� and three-photon electromagnetically in-
duced transparency �EIT� �22� have been observed. We will
comment on how our model system reproduces and differs
from these studies. Finally, three-photon resonances have
been studied in connection with metrology �23,24�. Indeed,
the type of system we consider is encountered in atomic
clocks, where transition �S�→ �Q� is the clock transition of,
say, a 40Ca+ ion or a 87Sr atom, and the dynamics we predict
may have applications for high-precision optical clocks. In
this context, we also study how the oscillatory motion inside
an ion trap modifies the spectroscopic signals.

This article is organized as follows. In Sec. II the theoret-
ical model is introduced, in Sec. III the theoretical analysis
and predictions are reported, and in Sec. IV we extend it
when the oscillatory motion of a trapped atom is considered.
In Sec. V discussions and conclusions are reported, and in
the appendix the model at the basis of calculations in Sec. IV
is described.*Electronic address: caroline.champenois@up.univ-mrs.fr
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II. THEORETICAL MODEL

The atomic system we consider is composed by four elec-
tronic levels which are coupled by laser fields, according to
the N-shaped scheme depicted in Fig. 1. Here, states �S�, �D�,
and �Q� are �meta�stable, state �P� is unstable and decays
radiatively into �S� and �D�. This configuration of levels is
realized, for instance, in alkaline-earth atoms with hyperfine
structure and in alkalilike ions with a metastable d orbital,
such as Hg+, Ba+, Sr+, or Ca+. In this manuscript we make
reference to the typical parameters of a 40Ca+ ion. In this
case, the relevant levels can be identified with the states
�S�= �S1/2�, �P�= �P1/2�, �D�= �D3/2�, and �Q�= �D5/2�. Here, the
transition �S�→ �Q�, marked by C in Fig. 1, is an electric
quadrupole transition with a linewidth of the order of 0.1 Hz,
while �S� and �D� couple to the excited state �P� with electric
dipole transitions �marked by B and R, respectively�. We
denote by �ij �i , j=S , P ,D ,Q� the resonance frequencies of
the transitions. Transitions �S�→ �P� and �D�→ �P� are
coupled by lasers at frequency �B and �R and Rabi frequen-
cies �B and �R, respectively. These three states form a
�-configuration of levels. Transition �S�→ �Q� is driven by a
laser at frequency �C and Rabi frequency �C.

We denote by � the density matrix for the ion’s internal
degrees of freedom, while we treat the center of mass vari-
ables classically. We denote by x�t� the time-dependent po-
sition of the atom. The master equation for the density matrix
� is

�

�t
� = −

i

�
�H,�� + L� , �1�

where Hamiltonian H gives the coherent dynamics and is
decomposed into the terms

H = H0 + HI,

where

H0 = − ��B�P��P� − ��C�Q��Q� + ���R − �B��D��D� �2�

gives the internal energies in the reference frames of the
lasers, with detunings defined as �B=�B−�PS, �R=�R
−�PD, and �C=�C−�QS, while

HI =
��B

2
eikBx�t��P��S� +

��R

2
eikRx�t��P��D�

+
��C

2
eikCx�t��Q��S� + H.c. �3�

gives the laser coupling, where � j denote the Rabi frequen-
cies and kj the corresponding laser wave vectors �j
=B ,R ,C�. The relaxation operator

L� = −
1

2
�P���P��P� + �P��P��� + �PS�P�S��P���P��S�

+ �PD�P�D��P���P��D� �4�

describes the radiative processes, coupling �P� to states �S�
and �D�, with decary rate �P�20 MHz and branching ratio
�PS /�PD�15 for Ca+ and �PS+�PD=1.

The radiative decay of state �Q�, whose lifetime is about
1 s for Ca+, will be neglected in the analytical model we
present below, but it is taken into account in the numerical
calculations. It should also be noted that there is a large
difference, by some orders of magnitude, between the dipole
and the quadrupole couplings. In this manuscript we will
focus on situations in which state �Q� is weakly coupled to
the � scheme, and which are thus experimentally feasible
with standard laser sources. Finally, we will make reference
to the dynamics of a single ion, as it can be realized in
radio-frequency traps, and we will characterize its response
by means of the occupation probabilities of the atomic lev-
els, which can be monitored by resonance fluorescence or
electron shelving techniques �25�. We will also take into ac-
count the ion’s oscillatory motion in the trap.

III. INTERNAL DYNAMICS OF A LOCALIZED PARTICLE

In this section we focus on the solutions of Eq. �1� when
the motion of the particle can be neglected, i.e., for steep
traps and efficient cooling, such that the amplitude of its
residual oscillations is much smaller than the laser wave-
length. We study the dynamics with simple analytical models
and compare their predictions with the results obtained from
numerically solving the optical Bloch equations, derived
from Eq. �1�. We analyze the steady state and the time evo-
lution under two particular conditions �i� the three-photon
resonance case

�B − �R − �C = 0 and �C � 0 �5�

in which states �D� and �Q� are resonantly coupled by three-
photon processes and �ii� the �2+1�-photon resonance case

�R − �B = 0 and �C = 0 �6�

in which states �S� and �D� are coupled resonantly by a two-
photon transition while �S� and �Q� are coupled resonantly by
a one-photon process.

The major difference between the two cases is that when
the �2+1�-photon resonance condition �ii� is fulfilled, the
steady state response of the �-system alone would be char-
acterized by a dark resonance, or coherent population trap-
ping, resulting from the destructive interference between the

|P

|S

|D
|Q

R
B

C

FIG. 1. N Level scheme. The states �D�, �P�, �S� form a �
configuration; additionally, state �S� couples weakly to the meta-
stable state �Q�. The solid lines and letters R ,B ,C indicate the laser
couplings, the wavy lines the radiative decay channels. Parameters
and possible atomic species are discussed in the text.

CHAMPENOIS, MORIGI, AND ESCHNER PHYSICAL REVIEW A 74, 053404 �2006�

053404-2



two excitation paths �S�→ �P� and �D�→ �P� �9�. This has
profound consequences also for the four-level dynamics, as
will be shown below.

A. Dressed states analysis

In order to get some insight, we evaluate the dressed
states of the system in the two limiting cases. We first focus
on the three-photon resonance, condition �5�, in the situation
when the coupling between states �Q� and �S� can be treated
perturbatively. We hence assume �C�0 and �C	 ��C�. The
coupling between �Q� and �S� is in first order in the pertur-
bation parameter 
C=�C /2�C, and corrections to the states
�Q� and �S� are at second order in 
C, according to

�SQ� = N��S� + 
C�Q�� , �7�

�QS� = N��Q� − 
C�S�� , �8�

where N gives the correct normalization. The eigenfrequen-
cies for these two states are 
C�C /2 and −�C−
C�C /2, as
displayed in Fig. 2�a�. Here, �D� and �QS� are resonantly
coupled by an effective two-photon process, and the system
can be pumped into the eigenstate

��NC� = N��E�D� + �QS�� �9�

with

E =
�B

�R

C

and normalization factor N�. This state is stable at second
order in 
C, it has the property of a dark state which is
occupied asymptotically, thus signalling coherent population
trapping �9�. According to this description, the corresponding
electronic occupations at steady state P j

�NC�= ��j ��NC��2 �j
=Q ,D ,S , P�, are

PQ
�NC� =

1

1 + 
C
2 + E2 + O�
C

4 ,E4� , �10�

PD
�NC� =

E2

1 + E2 + O�
C
4 ,E4� , �11�

PS
�NC� =


C
2

1 + 
C
2 + E2 + O�
C

4 ,E4� , �12�

while PP
�NC�=O�
C

4 �. Hence, the parameter E, or more pre-
cisely the ratio �B /�R compared to 1/
C, determines the
distribution of population between states �Q� and �D�. A typi-
cal experimental situation is that �B and �R are similar, such
that we concentrate on the case �B /�R	1/
C, i.e., E	1,
and we see that the atom will occupy �Q� with almost unit
probability. In this regime, the linewidth of state �Q� is due to
higher-order coupling in 
C to state �P�, and scales with
�
C

2 �B /�R�2.
We now consider the case in which the 2+1-photon reso-

nance condition �6� is fulfilled. We still restrict the discussion
to the regime in which �C is weak compared to all other

coupling terms. In this case it is convenient to consider the
eigenstates of the � system formed by 	�S� , �P� , �D�
,

��D� = ��R�S� − �B�D��/�̄ ,

��+� = cos 
�P� + sin 
��B�S� + �R�D��/�̄ ,

��−� = − sin 
�P� + cos 
��B�S� + �R�D��/�̄

with �̄=��R
2 +�B

2 and tan 
= ��B+��B
2 +�̄2� /�̄ with 0�


�� /2. The dressed states of the diagonalized � system are
at frequencies

�D = 0

and

0

(a)

0

(b)

FIG. 2. Dressed states picture for �a� the three-photon resonance
case and �b� the �2+1�-photon resonance case. See text for param-
eters and definitions.
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�± = −
1

2
��B � ��B

2 + �̄2� .

The level scheme in this basis is sketched in Fig. 2�b�. Here,
��D� is the dark state of the � system �9�. At �2+1�-photon
resonance, state �Q� is resonantly coupled to the dark state

��D� at rate �̃C=�C�R /�̄, and for sufficiently weak cou-
pling, �C	 ��±�, there will be a time scale on which the
dynamics of the system can be reduced to resonant two-level
dynamics between these two states. For longer times, off-
resonant coupling between �Q� and ��±� gives rise to damp-

ing, and the system approaches the steady state at a rate

which scales with the ratio �B
2 /�̄2. This damping gives rise

also to the small residual linewidth of the �2+1�-photon
resonance in the spectra shown in the next section.

B. Steady state

In order to illustrate the spectroscopic significance of the
dressed states, we now discuss the steady-state populations
P j of the electronic levels �j=S , P ,D ,Q� as a function of �R,
for the two cases �C�0 and �C=0, see Fig. 3. For highlight-
ing the peculiarities of the four-level dynamics, we compare
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FIG. 3. Steady state popula-
tions P j as a function of the detun-
ing �R /2�. Displayed are PS, PP,
PD, and PQ, from top to bottom.
The parameters are �B=2�
�8 MHz, �C=2��0.05 MHz,
�B=2��10 MHz, and �R=2�
�2.5 MHz. In �a�–�d� �C=2�
�5 MHz, such that the three-
photon resonance is fulfilled at
�R=2��3 MHz; in �e�–�g� �C

=0, such that the �2+1�-photon
resonance is found at �R=2�
�8 MHz. The dashed lines give
the steady state populations for
the same parameters but no cou-
pling to �Q� ��C=0�.
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them to the behavior of the unperturbed � system ��C=0�,
whose stationary level occupations are indicated by the
dashed curves; they exhibit the dark resonance at �R=�B,
corresponding to suppressed population of �P�. The effect of
the weak coupling to state �Q� is represented by the solid
curves.

Figures 3�a�–3�d� display the case �C�0. One observes
that coupling to �Q� does not change the behavior around the
dark resonance, but it induces a critical change when �R is at
three-photon resonance: at this value all population is trans-
ferred to state �Q�, Fig. 3�d�, while all other states are corre-
spondingly emptied. The width of this resonance is con-
trolled by the ratio �R /�B, as discussed in the previous

section. With the parameters chosen in Fig. 3 ��R /�B
=0.25�, the resonance is narrow but it can be made broader
by increasing this ratio. In general, occupation of state �Q� at
three-photon resonance is controlled by the parameter E, as
has been pointed out in the dressed state picture in Sec. III A.
The important finding in this context is that in the regime
E	1, PQ is very close to unity, independent of the value of
�C. This is only limited for very small values of the coupling
by the decay of level �Q�. In practical terms, this allows for
robust preparation of the atom in �Q�, by tuning the lasers to
the three-photon resonance.

Figures 3�e�–3�h� display the stationary populations as a
function of �R when �C=0. At �2+1�-photon resonance, the
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FIG. 4. Time evolution of the
atomic level populations at three-
�left� and �2+1�-photon resonance
�right�, for different initial states.
The lines correspond to the �Q�
state �solid�, �D� state �dashed�,
�S� state �dash-dotted�, and �P�
state �dotted�. The initial state is
�S� in �a�, �d�, �D� in �b�, �e�, and
�Q�, in �c�, �f�. Parameters in �a�–
�c� are the same as in Figs.
3�a�–3�d�, and in �d�–�f� the same
as in Figs. 3�e�–3�h�. The thinner
curves give the result in absence
of coupling to state �Q� ��C=0�,
plotted on a logarithmic time
scale.
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coupling to �Q� gives rise to a transfer of 50% of the atomic
population from the dark state of the � system to �Q�. In
contrast to the case of �C�0, this is indeed the maximum
occupation that �Q� can achieve for �C=0. This is under-
stood considering the dressed state picture in Sec. III A: for
�C=0 dark state ��D� and �Q� form a resonantly coupled
two-level system, where damping is weak and arises only
from off-resonant coupling. Hence, at steady state the popu-
lations of the two states are the stationary populations of a
saturated dipole.

The two examples reported here show that a weak cou-
pling to a fourth state which is metastable can change dra-
matically the response of a � system when the detunings
fulfill, or are around, the three-photon resonance condition.
Three-photon processes were previously studied in Refs.
�19,20� in an atomic model system where decay of state �P�
into �Q� is allowed. This constitutes a major difference to the
dynamics discussed here: in the model of Refs. �19,20� one
does not observe the narrow three-photon resonance for
weak coupling �C, as population is optically pumped into
�Q� for a wide range of values of �R.

C. Time evolution at three-photon resonance

Let us now consider how the atomic level occupation
evolves as a function of time. Figures 4�a�–4�c� display the
time evolution for different initial conditions when the atom
is driven at three-photon resonance and when ��C���C, i.e.,
under conditions for which the atom is found in �Q� at steady
state. The thinner curves are plotted for comparison and in-
dicate the corresponding three-level dynamics, evaluated by
setting �C=0. When the initial state is �S� or �D� �Figs. 4�a�
and 4�b��, one can identify a clear hierarchy of couplings: on
a short time scale, within about 1 �s for the chosen param-
eters, the system evolves to the steady state of the � con-
figuration. On a longer time scale ��1 ms�, population is
transferred to state �Q� through its coupling to the � scheme.
When the system has been prepared in state �Q� �Fig. 4�c��, it
essentially remains in that state during all time, apart from a
small redistribution of population from �Q� to �D� on the
slow time scale.

Such a dynamical behavior indicates the appearance of
quantum jumps �26–28�, i.e., of randomly alternating phases
of full and no fluorescence: after the emission of a photon,
which projects the atom into either �S� or �D�, the atom
quickly assumes a quasisteady state �the steady state of the �
system� which has significant population in �P� and is there-
fore likely to scatter more photons. The average duration of
these bright periods is given by the slow time scale on which
the system evolves into �Q�. With the parameters of this ex-
ample, an average of about 3�103 photons are scattered
during a bright period. When the system has made a transi-
tion to �Q�, signalled by a dark time much longer than the
typical interval between two scattered photons �29�, then it
will remain there for the average duration of the dark peri-
ods, i.e., the long time scale on which �Q� couples to the
remaining three states �Fig. 4�c��.

Figures 4�d�–4�f� display the time evolution out of vari-
ous initial states, when the �2+1�-photon resonance is ful-

filled. The dynamics are again well separated into different
time scales: the system accesses very quickly �within
�1 �s� the steady state of the � system, which in this case is
the dark state of Eq. �13� with no population in �P�. On the
very long time scale ��1 ms�, the global steady state includ-
ing �Q� is assumed. The important observation, peculiar for
this �2+1�-photon case, are oscillations on the intermediate
time scale, between the populations of �D�, �S�, and �Q�,
whereby �D� and �S� oscillate in phase with each other, and in
antiphase with �Q�. This is consistent with the dressed state
analysis of Sec. III A and corresponds to Rabi oscillations
between the dark state ��D� and the state �Q�. Figure 5 high-
lights these oscillations, whose frequency is determined by
the effective Rabi coupling �C�R /�̄. Hence, the overall dy-
namics of the �2+1�-photon resonance case are characterized
by an initial dissipative behavior which evolves into a period
of coherent dynamics, i.e., Rabi oscillations between ��D�
and �Q�; finally, these Rabi oscillations are also damped out
through off-resonant coupling to states ��±�, which decay
incoherently.

We remark that in this situation a single atom would be
observed to switch spontaneously between incoherent and
coherent dynamics: as the damping of the Rabi oscillations
corresponds to the emission of a photon, it will trigger the
dynamics of Fig. 4�d� to start again. This type of quantum-
jump behavior should be revealed in an experiment through
long-time oscillations of the g�2���� photon-photon correla-
tion function.

Moreover, the coherent coupling between the dark and the
�Q� state can be brought to an extreme behavior: in the limit
�R	�B the dark state practically coincides with state �D�,
and one observes Rabi oscillations between states �D� and
�Q�, where population is directly and coherently transferred
between the two states by means of three-photon processes.

IV. EFFECTS OF THE CENTER-OF-MASS MOTION

So far we have neglected the effect of the center-of-mass
motion on the atomic dynamics. The motion may however
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FIG. 5. Rabi oscillations between states ��D� �dashed line� and
�Q� �solid line�, corresponding to Fig. 4�d� but plotted on a linear
time scale.
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critically affect the atomic response, and the N-type level
scheme we are considering has been subject of several stud-
ies of how inhomogeneous broadening affects light transmis-
sion in atomic vapors �20–22�. Let us start with some general
considerations for our particular system. In the dressed state

picture at three-photon resonance �condition �5��, motion of
the atom at momentum p� gives rise to a Doppler effect which
lifts the degeneracy between states �D� and �Q�. It thus gives
rise to an instability of state ��NC�, Eq. �9�, which now
couples to state ��C�=N���D�−E�QS�� at rate
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FIG. 6. Steady state populations PS, PP, PD, and PQ �from top to bottom� versus detuning �R /2� for the same parameters as in Fig. 3
and taking into account the oscillation of the Ca+ ion in a trap at frequency �=2��1 MHz and Lamb-Dicke parameters ��B,R,C�
= �0.1,0.046,0.054�. The dashed line corresponds to the case of copropagating lasers �minimal �k� =k�B�0.003�, the solid line to k�R and k�C

copropagating against k�B �maximal �k� �k�B�2�. The left column illustrates the three-photon resonance, the right one the �2+1�-photon
resonance.
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R = ��NC�H��C� 
 E p�

m
· �k�R − k�B + k�C� . �13�

This coupling may sensitively affect the dynamics of the
system, due to the narrow resonance condition. It vanishes,
however, in the geometric Doppler-free three-photon reso-
nance condition �phase-matching condition�

�k� = k�R − k�B + k�C = 0� .

This configuration has been studied in Refs. �20,22�. In ad-

dition, in the same configuration but for �k� �0� , Doppler-
insensitive three-photon resonances have been observed
when �S�→ �Q� is in the radio-frequency regime �22�. In this
special case, the radio-frequency coupling gives rise to side-
bands and thus to a discrete spectrum of excitations on the
transition �S�→ �Q� which couple quasiresonantly to �D� for
different velocity classes �20�.

In our model system, 40Ca+, all transitions are in the op-
tical regime. We account for the oscillatory motion of the ion
inside the trapping potential by a time-dependent position

x��t� = x�0 cos �t ,

where x�0 is the classical oscillation amplitude and � the fre-
quency of oscillation �30�. In the Hamiltonian �3�, the effect
is a modulation of the radiative coupling. In this manuscript

we will assume the Lamb-Dicke regime, using the Lamb-
Dicke parameters � j =k� j ·x�0 /2 �j=S , P ,D ,Q� as small pertur-
bative parameters. We then use a Floquet ansatz for studying
the stationary response of the system. The basic equations
are reported in the Appendix.

Figure 6 shows the steady state populations of the four
electronic levels around the three-photon resonance �left col-
umn� and the �2+1�-photon resonance �right column� for dif-
ferent laser beam geometries. The dashed curves correspond
to the case where the lasers are copropagating, which for Ca+

gives rise to a small three-photon Doppler effect: the two
metastable states have very close energy levels, and in this
configuration, the effective wave vector is �k� =k�B�0.003.
We see that, in this case, the effect of the motion does not
change appreciably the steady state occupation.

The solid lines in Fig. 6 correspond to a Doppler sensitive
geometry, where k�B counter-propagates against k�R and k�C.
For this geometry one can observe sidebands in the reso-
nance profile. Moreover, there are major differences between
the three-photon and the �2+1�-photon resonance cases, in
which the sideband signals are significantly narrower and
higher. One also observes that in the three-photon resonance
case the height of the central band of PQ is reduced by the
effect of the motion to a value smaller than unity �Fig. 6�d��
while for the �2+1�-photon resonance the central band of PQ

still reaches the maximum value 1/2. Further insight can be
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FIG. 7. Steady state population PQ versus de-
tunings �R /2�, �B /2�, and �C /2� �from top to
bottom�, for the same parameters as in Fig. 6, and
for k�R and k�C copropagating against k�B ��k� �k�B

�2�. The left column illustrates the three-photon
resonance, the right one the �2+1�-photon
resonance.
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gained by comparing the spectra obtained by scanning the
three different lasers, as shown in Fig. 7. One clearly ob-
serves that the sidebands are especially high when they fall
in the dark-resonance region, and that they may be larger
than the central band when the �2+1�-resonance condition is
fulfilled between the dark state and one of the sidebands
�Fig. 7�f��. In this latter case, they achieve a value larger than
1/2 due to the contribution of three-photon processes which
include one sideband transition.

V. DISCUSSION AND CONCLUSIONS

The weak coupling of a �-shaped three-level system to a
fourth metastable state modifies critically the dynamics at
three-photon resonance. In a wide regime of parameters, the
metastable level is occupied with unit probability at steady
state. The time evolution shows that the dynamics of the
system is characterized by two time scales, a short one cor-
responding to the dynamics of the � system alone, and a
longer one corresponding to its coupling to the metastable
state: on this time scale population is transferred into it.
When the � system is driven at two-photon resonance and
the three-photon resonance condition is fulfilled, the system
first accesses the three-level dark state through dissipation
and then switches to coherent dynamics, characterized by
Rabi oscillations between dark and metastable state. By
choosing the coupling properly, these dynamics can reduce
to direct coherent transfer �Rabi oscillations� between the
two extremal states coupled at three-photon resonance.

In general, the center-of-mass motion modifies substan-
tially the response of the system, due to the sensitivity of the
narrow resonances to Doppler shifts. The narrow three-
photon resonance is recovered in configurations of the laser
beams for which the Doppler effect on the three-photon tran-
sition is suppressed. In this manuscript we have considered
the effect of the oscillatory motion of a tightly trapped atom,
and we have observed that the motional sidebands which
appear in the spectra can be significantly enhanced due to
interfering two- and three-photon processes.

In an experimental realization, finite laser bandwidths will
be detrimental for the creation of quantum coherences. The
three-photon resonance can be still observed by broadening
its linewidth, increasing the ratio �B /�R. Numerical calcu-
lations show that more than 97% occupation of state �Q� can
be reached with lasers of bandwidth 10 kHz �HWHM� under
the three-photon resonance condition. For the same param-
eters, the effect of the laser bandwidth at �2+1�-photon reso-
nance leads to a reduction of the population by only 0.2%
with respect to the ideal case.

In conclusion, we have shown that the weak perturbation
of a � system, achieved by coupling to a metastable state,

gives rise to interesting dynamics. We have provided simple
pictures for understanding them. These can find applications
for high-precision measurement, for instance for metrology
in the spirit of Refs. �8,24�, quantum state preparation and
manipulation as, for instance, in transistors for single atoms
as in Ref. �7�.
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APPENDIX: OSCILLATORY MOTION OF THE
TRAPPED ATOM

In the Lamb-Dicke regime, we decompose

HI�t� = HI
�0� + ei�tHI

+ + e−i�tHI
−,

with

HI
�0� =

��B

2
�P��S� +

��R

2
�P��D� +

��C

2
�Q��S� + H.c.,

HI
± = i�B

��B

2
�P��S� + i�R

��R

2
�P��D� + i�C

��C

2
�Q��S� + H.c.

The solution can be found using a Floquet ansatz for the
density matrix, hence writing

� = �
n=−�

�

��n�ein�t. �A1�

Substituting into the master equation, we find the coupled
equations

�

�t
��n� = − in���n� −

i

�
�H0 + HI

�0�,��n�� −
i

�
�HI

+,��n−1��

−
i

�
�HI

−,��n+1�� + L��n� �A2�

which have been obtained by neglecting higher orders in the
Lamb-Dicke expansion.
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